SiMoNa optimiert organische Leuchtdioden

(Nanowerk News) Ob Mobiltelefone, Flachbildfernseher oder Raumbeleuchtung – organische Leuchtdioden werden künftig immer mehr Anwendungen erobern und neue Möglichkeiten in Design und Funktion eröffnen. Wissenschaftler am Institut für Nanotechnologie (INT) des KIT haben nun eine Simulationslösung zur zeit- und kostengünstigen Optimierung von OLEDs entwickelt. Mit "SiMoNa" lassen sich Materialeigenschaften gezielt verbessern sowie geeignete Farbstoffmoleküle designen und patentieren. Die Ausgründung NanoMatch startet diesen Monat.
In den Displays von Mobiltelefonen sind OLEDs heute schon verbreitet. Künftig sollen die aus mehreren Schichten aufgebauten organischen Leuchtdioden auch in anderen Beleuchtungsanwendungen bestehende Technologien ablösen. Da sie ultraflach, ultraleicht und ausgesprochen energieeffizient sind, eröffnen sie völlig neue Möglichkeiten, beispielsweise rollbare Bildschirme auf formbaren Trägermaterialien. Sollen solche Technologien leistungsstark und kostengünstig sein, müssen die OLEDs vor der Produktion optimiert werden. Dazu bedurfte es bisher, wie auf vielen Gebieten der organischen Elektronik, einer Vielzahl von aufwendigen Experimenten.
Forscher um Professor Dr. Wolfgang Wenzel und Professor Dr. Mario Ruben vom Institut für Nanotechnologie sowie Dr. Robert Maul vom Institut für Theoretische Festkörperphysik (TFP) des KIT haben nun eine intelligente Software entwickelt, welche die molekularen Prozesse in einer OLED am Computer simuliert. Mit SiMoNa lassen sich die elektronischen Eigenschaften und Leistungscharakteristika von OLEDs zeit- und kostengünstig optimieren.
Im Mai 2011 startet NanoMatch als Ausgründung aus dem KIT mit Unterstützung der KIT-Dienstleistungseinheit Innovationsmanagement (IMA), des Centers for Innovation and Enterpreneurship (CIE) am KIT und der Inititative nanovalley.eu. NanoMatch betreut die Anpassung und Anwendung der am KIT entwickelten wegweisenden neuen Simulationstechnologie.
SiMoNa steht für "Simulation Molekularer Nanostrukturen". Die Simulationslösung kombiniert erstmals eine Strukturvorhersage des Materials auf molekularer Grundlage mit einer quantenmechanischen Analyse der daraus erwachsenden Funktion. Im Vergleich zu herkömmlichen Ansätzen zur Morphologiebestimmung liegt die Simulationsgeschwindigkeit rund eine Million Mal höher. Auf der Grundlage der so gewonnenen dreidimensionalen Struktur des Systems lässt sich über quantenmechanische Berechnungen die Ladungsträgermobilität vorhersagen.
Die neue Software kann hochspezifische Materialkompositionen simulieren und den Ladungstransport auch in unbekannten Stoffklassen vorhersagen, für die noch keine experimentellen Daten vorliegen. SiMoNa ermöglicht daher, gezielt geeignete Komponenten für OLEDs zu designen, frühzeitig zu patentieren und bekannte OLED-Komponenten auf höhere Funktion und Leistung hin zu optimieren.
Aus der virtuellen Optimierung leiten die Entwickler wichtige Parameter für Prototypen von organischen Leuchtdioden ab. Diese Daten bilden die Basis für Spezialchemikalien und Grundstoffe von OLEDs, die für neuartige Anwendungen maßgeschneidert sind. Vorteile von SiMoNa sind die simulationsbasierte Verkürzung von Produktentwicklungszyklen von OLEDs und ein früherer Markteintritt auf Basis der Simulationsergebnisse.
Source: KIT