Jul 26, 2011 | |
Progress on research of polymer solar cells |
|
(Nanowerk News) The Institute of Polymer Optoelectronic Materials & Devices, South China University of Technology, Guangzhou, in close collaboration with the Department of Electrical and Electronic Engineering, The University of Hong Kong, has shown that the band gap and energy levels of conjugated polymers can be finely tuned using a two-dimensional-like donor- |
|
Bulk-heterojunction (BHJ) polymer solar cells (PSCs) have attracted considerable attention because of unique advantages over traditional silicon-based solar cells such as low cost, light weight, and the potential to produce flexible, large area devices by roll-to-roll manufacturing. In most cases, BHJ-type solar cells use a phase-separated blend of organic electron donor and acceptor components, where a conjugated polymer and fullerene derivative are often used as the donor and acceptor, respectively. To achieve high performance BHJ-type PSCs, the electron-donating conjugated polymer needs to strongly absorb a broad range of solar light, and possess good hole mobility and a highest occupied molecular orbital (HOMO) level that maximize the short-circuit current (Jsc) and open-circuit voltage (Voc), respectively. This requires simultaneous control of the band gap, energy levels and molecular packing of the conjugated polymer. | |
To realize ready, precise control of the electronic and optical properties of conjugated polymers, Prof. Huang and collaborators proposed a new two-dimensional-like D- |
|
As an important step forward in their research on two-dimensional-like D- |
|
"It is quite interesting that the band gaps and energy levels of the polymers were effectively tuned by simply attaching different acceptor groups, while their relatively deep HOMO energy levels of ~-5.35 eV were preserved." said one journal reviewer. "The results are interesting to the organic solar cell community" said another. | |
Funding from the National Natural Science Foundation of China (50990065, 5101003, 51073058 and 20904011), the Ministry of Science and Technology, China (MOST) National Research Project (2009CB623601), the UGC grant (400897) of the University of Hong Kong and Hong Kong Research Grants Council (HKU#712108 and HKU#712010) supported this research. | |
References | |
Duan CH, Wang CD, Liu SJ, Huang F, Choy WCH and Cao Y. Two-dimensional like conjugated copolymers for high efficiency bulk-heterojunction solar cell application: Band gap and energy level engineering, Sci. China Chem. 2011, 54(4): 685-694. http://www.scichina.com | |
Huang F, Chen KS, Yip HL, Hau SK, Acton O, Zhang Y, Luo JD and Jen AKY. Development of new conjugated polymers with donor- |
|
Duan CH, Cai WZ, Huang F, Zhang J, Wang M, Yang TB, Zhong CM, Gong X and Cao Y. Novel silafluorene-based conjugated polymers with pendant acceptor groups for high performance solar cells. Macromolecules, 2010, 43(12): 5262-5268. http://pubs.acs.org/doi/abs/10.1021/ma100616f | |
Duan CH, Chen KS, Huang F, Yip HL, Liu SJ, Zhang J, Jen AKY and Cao Y. Synthesis, characterization, and photovoltaic properties of carbazole-based two-dimensional conjugated polymers with donor- |
Source: Science in China Press |
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.