Aug 29, 2011 | |
Scientists put a new spin on traditional information technology |
|
(Nanowerk News) Sending information by varying the properties of electromagnetic waves has served humanity well for more than a century, but as our electronic chips steadily shrink, the signals they carry can bleed across wires and interfere with each other, presenting a barrier to further size reductions. A possible solution could be to encode ones and zeros, not with voltage, but with electron spin, and researchers have now quantified some of the benefits this fresh approach might yield. | |
In a paper in the AIP's journal Applied Physics Letters ("Silicon spin communication"), a team from the University of Rochester and the University of Buffalo has proposed a new communications scheme that would use silicon wires carrying a constant current to drive electrons from a transmitter to a receiver. By changing its magnetization, a contact would inject electron spin (either up or down) into the current at the transmitter end. | |
Over at the receiver end, a magnet would separate the current based on the spin, and a logic device would register either a one or a zero. The researchers chose silicon wires because silicon's electrons hold onto their spin for longer than other semiconductors. The team calculated the bandwidth and power consumption of a model spin-communication circuit, and found it would transmit more information and use less power than circuits using existing techniques. | |
The researchers did find that the latency, or the time it takes information to travel from transmitter to receiver, was longer for the spin-communication circuit, but its other benefits mean the new scheme may one day shape the design of many emerging technologies. |
Source: American Institute of Physics |
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.