Researchers create a protein 'mat' that can soak up pollution

(Nanowerk News) n a breakthrough that could lead to a new class of materials with functions found only in living systems, scientists at the UC Berkeley have figured out a way to keep certain proteins active outside of the cell. The researchers used this technology to create mats that can soak up and trap chemical pollution.
Despite years of effort to stabilize proteins outside of their native environments, scientists have made limited progress in combining proteins with synthetic components like fibers without compromising protein activity. The new study shows a path toward exploiting the power of proteins outside of the cell by demonstrating a unique way to keep proteins active in synthetic environments. The materials presented in the study could enable on-demand biochemical reactions, such as in war zones or contaminated sites, where they were once not feasible.
The white fiber mat seen here contains a stable enzyme that can break down a toxic chemical
The white fiber mat seen here contains a stable enzyme that can break down a toxic chemical. (Image: Christopher DelRe and Charley Huang)
“We think we’ve cracked the code for interfacing natural and synthetic systems,” said study author Ting Xu, a Berkeley professor in the Department of Materials Science and Engineering and the Department of Chemistry, whose lab led the work. The study was published in the journal Science ("Random heteropolymers preserve protein function in foreign environments").
The problem with proteins is that they are finicky. Remove them from their native environments and they will likely fall apart. To function properly, proteins must fold into a specific structure, often with the help of other proteins. To overcome this challenge, Xu’s lab analyzed trends in protein sequences and surfaces to see if they could develop a synthetic polymer that provides all the things that a protein would need to keep its structure and function.
“Proteins have very well-defined statistical pattern, so if you can mimic that pattern, then you can marry the synthetic and natural systems, which allows us to make these materials,” said the study’s first author Brian Panganiban, a former graduate student in Xu’s lab who is now a chemist at PolyDrop, a Seattle-based chemical company.
The researchers then created random heteropolymers, which they call RHPs. RHPs are composed of four types of monomer subunits, each with chemical properties designed to interact with chemical patches on the surface of proteins of interest. The monomers are connected to mimic a natural protein to maximize the flexibility of their interactions with protein surfaces.
The researchers at Northwestern University ran extensive molecular simulations to show that the RHP would interact favorably with protein surfaces, leading to correct protein folding and stability outside of the cell. The fiber mats contain random heteropolymers that stabilize organophosphorus hydrolase, an enzyme that breaks down a well-known insecticide. The researchers submersed the mats in the insecticide and found that the mats degraded the insecticide.
The researchers then tested whether they can use an RHP to create protein-based materials for bioremediation of toxic chemicals, which they were funded to do by the Department of Defense. The researchers mixed RHP with a protein called organophosphorus hydrolase (OPH), which degrades the toxic organophosphates found in insecticides and chemical warfare agents.
The researchers used the RHP/OPH combination to make fiber mats, submersed the mats in a well-known insecticide and found that the mats degraded an amount of insecticide weighing approximately one-tenth of the total fiber mat in just a few minutes. This opens the door to the creation of larger mats that could soak up toxic chemicals in places like war zones.
Their approach should be applicable to other enzymes and other materials, Xu said, opening the door to the creation of portable chemistry labs for solving different environmental problems.
Source: By Brett Israel, UC Berkeley