Novel electrode boosts green hydrogen research

(Nanowerk News) Polymer electrolyte membrane water electrolysers (PEMWEs) convert electricity and water into hydrogen and oxygen using two electrodes separated by a solid polymer electrolyte. This promising technology could be coupled to intermittent renewable energy sources to generate hydrogen for efficient energy storage and low-carbon transportation.
PEMWEs are more efficient than currently-used alkaline electrolysis technologies, but require relatively expensive catalyst materials such as iridium/ruthenium oxide (for oxygen evolution at the anode) and platinum (for hydrogen evolution at the cathode). Cost-effective design and extended lifetime are needed to boost competitiveness of PEMWEs, but development is currently being held back by poor understanding of the degradation of these catalysts.
hydrogen refuelling station, HFuel
ITM Power's hydrogen refuelling station, HFuel, generates hydrogen by electrolysis
Edward Brightman and Gareth Hinds from the Centre for Carbon Measurement at NPL have adapted their innovative fuel cell reference electrode for use in PEMWEs, allowing in situ measurement of the electrochemical processes at the anode and the cathode.
Conventional reference electrodes either connect to the edge of the cell under test, leading to significant measurement errors arising from edge effects, or require special modifications to be made to the PEMWE's design, making them difficult to incorporate. NPL's reference electrode avoids these problems by connecting directly to the active region of the cell through holes drilled into the end plates of the cell. This allows the reference electrode to determine the contributions of the anode and the cathode to the cell voltage, without affecting the cell's performance.
Commercial PEMWE systems commonly show a decay in open-circuit potential (the voltage at zero current) after the current is switched off. This has conventionally been attributed to changes in the redox state of the anode catalyst which can lead to degradation.
But in new work published in Electrochemistry Communications ("In situ characterisation of PEM water electrolysers using a novel reference electrode"), the NPL reference electrode has demonstrated that the decay in potential is in fact entirely due to the cathode. This is caused by oxidation of the platinum surface following shut-down, and large changes in potential were found to significantly reduce the electrochemical surface area of the platinum catalyst.
NPL is working with ITM Power, the UK's leading manufacturer of commercial PEMWE systems, to apply the technique to the study of catalyst durability and the development of accelerated test protocols for new catalyst materials. While internationally-recognised accelerated stress tests exist for PEM fuel cells, there are no equivalent protocols for PEM electrolysers.
Nicholas van Dijk, Research Director at ITM Power and co-author of the publication, said:
"This work has disrupted the conventional thinking in PEM electrolyser degradation and has paved the way toward the development of internationally-recognised accelerated stress tests. It has not only helped speed up innovation to market within ITM Power, but will benefit the industry as a whole."
Source: National Physical Laboratory
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
These articles might interest you as well: