Is Europa habitable? Defining scientific goals of a mission to explore Jupiter's moon

(Nanowerk News) Europa, the ice-covered moon of the planet Jupiter, may be able to support life. NASA has commissioned a team of expert scientists to consider the science goals for a landed spacecraft mission to the surface of Europa, and to investigate the composition and geology of its icy shell and the potential for life within its interior ocean. The NASA-appointed Science Definition Team outlines the main priorities of a future lander mission to Europa to study its potential habitability in an article in Astrobiology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Astrobiology website.
The article “Science Potential from a Europa Lander” presents the three main objectives of a future mission designed to land a robotic spacecraft on the surface of Europa and to investigate its potential to support life. NASA's Science Definition Team has clearly identified three main priorities: investigate the composition and chemistry of Europa's ocean; characterize the thickness, uniformity, and dynamics of its icy shell; and study the moon's human-scale surface geology. In addition, the NASA-appointed team describes the types of studies and payload of instruments recommended to achieve these objectives.
R.T. Pappalardo and a large group of coauthors contribute a broad range of knowledge and expertise and represent leading government and academic institutions, including NASA's Jet Propulsion Laboratory, managed by the California Institute of Technology (Pasadena), University of Colorado (Boulder), University of Texas at Austin, NASA's Goddard Space Flight Center (Greenbelt, MD), NASA's Ames Research Center (Moffett Field, CA), University of Iowa (Iowa City), NASA's Marshall Space Flight Center (Huntsville, AL), Southwest Research Institute (Boulder, CO), The Johns Hopkins University Applied Physics Laboratory (Laurel, MD), Arizona State University (Tempe), and Massachusetts Institute of Technology (Cambridge).
“Landing on Europa and touching its surface is a visionary goal of planetary science,” says Robert Pappalardo, PhD of NASA’s Jet Propulsion Laboratory. “This is a difficult technical challenge that is probably many years away. Understanding the key scientific questions to be addressed by a future Europa lander helps us to focus on the technologies required to get us there, and on the necessary data that might be attained by a precursor mission that could scout out landing sites. Europa is the most likely place in our solar system beyond Earth to have life today, and a landed mission would be the best way to search for signs of life.”
“Landing on the surface of Europa is a key step in the astrobiological investigation of that world,” says Christopher McKay, PhD, Senior Editor of Astrobiology and a scientist at NASA Ames Research Center, Moffett Field, CA. “The paper by Pappalardo et al. outlines the science that could be done by such a lander. The hope would be that surface materials, possibly near the linear crack features, include biomarkers carried up from the ocean.”
Source: Mary Ann Liebert, Inc.