Open menu
 

Nanotechnology Research - Universities

 

Showing results 21 - 30 of 43 of university labs in Japan:

 
The Nanoscience and Nanotechnology Center proactively promotes industrial applications of nanotechnology while carrying out bottom-up and top-down technologies.
The Protonic NanoMachine Group aims at the ultimate understanding of the mechanisms of self-assembly and its regulation, conformational switching, force generation, and energy transduction by biological macromolecular complexes.
Research in the group focuses mainly on molecular signaling systems that transmit and convert cell and gene information, in which dynamic organization into the bio-system is deeply related to the function. Techniques including imaging technique of single molecules in 3D and real time aer being developed to visualize and manipulate single molecules in bio-systems and the behavior, structural changes and physical and chemical properties of individual bio-molecules acting in bio-molecular systems will be monitored in real time and space.
The group's research focuses on the development of functional oxides based thin film devices utilizing photonic, electronic, and magnetic properties; the fabrication of conducting oxide based superstructure and their potential investigation as thermoelectric materials; the development of special epitaxial growth method; and the development of novel oxide spintronics devices.
The group explores advanced molecular photonics based on semiconducting quantum dots, photofunctional organic molecules, and laser manipulation techniques.
The group's research focuses on plasmonics for photochemistry and photophysics, including following sub-topics: Plasmonic Waveguiding; Single Molecule Studies; Plasmon Associated Energy Harvesting; Drug Delivery System based on Plasmonics.
Researchers in the lab are involved in a variety of research aimed at integrating and combining top-down and bottom-up phenomena.
The lab is researching inorganic optical material with its robust frame structure, and are conducting research on the expression of optical functions through formation of nanostructures on the surface.
Research includes: Three-dimensional multi-layered tera byte optical storage with gold nano-particles; Chiral nanophotonics; Near-field Vibrational Nanophotonics; Plasmonic Band Gap Devices; Plasmonic Metamaterials; Metallic Nanolens.
Research target is establishment of new evaluation technique for MEMS / NEMS material properties. Research of silicon nanolithography technique and development of MEMS/NEMS devices are also performed.