Open menu
 

Nanotechnology Research - Universities

 

Showing results 31 - 40 of 538 of university labs in USA:

 
Nanofabrication manufacturing technology relates to the creation of microscopic structures. This technology is the basis of such diverse areas as computer chip manufacturing, flat panel displays and large scale solar power arrays used in space exploration, biological implants, medicine and pharmaceuticals. Rapid growth in these industries has created a strong demand for technicians with training in the intricacies of nanofabrication techniques and clean room procedures. Students enrolling in either program will spend three semesters on BCCC campus and the final capstone semester on Penn State campus.
The Atwater research group at Caltech is engaged in interdisciplinary materials and device research, spanning photonics and electronics and with applications in Si-based photonics, plasmonics, renewable energy and mechanically active thin film devices.
Research covers nanobiotechnology, nanophotonics and large-scale integration of nanosystems.
The objectives of the MSC are to develop methods required for first principles multiscale multi-paradigm based predictions of the structures and properties of proteins, DNA, polymers, ceramics, metal alloys, semiconductors, organometallics and to apply these methods to design new materials for pharma, catalysis, microelectronics, nanotechnology, and superconductors.
In the Molecular Programming Project (MPP) at the California Institute of Technology and the University of Washington, scientists will develop new computer science principles for programming information-bearing molecules like DNA and RNA to create artificial biomolecular programs of similar complexity.
The group is primarily interested in the design, fabrication and characterization nano-scale photonic and fluidic devices and systems.
Motivated by the goal of encoding arbitrary mechanical function into nucleic acid sequences, the lab is working to develop computational algorithms for the analysis and design of equilibrium and kinetic properties of nucleic acid systems. In the laboratory, we are focused on constructing molecular sensors, transducers and motors for therapeutic, bioimaging, and transport applications.
The research activities of Michael Roukes' group at Caltech are currently focused upon developing and using of nanodevices in the exploration of single-quantum and single-molecule phenomena.
One of the research areas at the Vahala group at Caltech is Planar Nanocrystal Quantum Dot Lasers.
The University of California, Los Angeles and University of California, Santa Barbara have joined to build the California NanoSystems Institute (CNSI), which will facilitate a multidisciplinary approach to develop the information, biomedical, and manufacturing technologies that will dominate science and the economy in the 21st century