Nanotechnology Research - Universities

 

Showing results 111 - 120 of 524 for universities in :

 
The group is interested in enhancing device performances by using novel nanotechnologies. They are studying new self-assembly materials forming sub-10 nm nanostructures based on polymers and nanoparticles. Their novel self-assembling systems aim for much superior precision, reliability, and reproducibility that are adequate for large-scale manufacturing of nanoscale devices. Applications include sub-10 nm lithography, information storage devices and energy storage/capture devices.
The Master's Programme in Nanotechnology provides a solid background in solid state physics, semiconductor devices, materials science and design, microelectronics, materials chemistry and an introduction to biotechnology. It offers a broad range of fundamental courses, e.g., quantum mechanics and solid state physics, but the programme is also experimentally oriented and provides several laboratory exercises as well as practical experience from advanced research tools for materials and device characterization.
Materials science has traditionally been an important research area at KTH with strong ties to the Swedish industry. In addition to the internationally highly competitive research in traditional materials, KTH has strong research in nanoscience and nanotechnology, which is used to study and tailor material structures.
Research on quantum Josephson circuits, nanostructured proteins and spintronics.
The lab tries to construct and establish a new concept of semiconductor materials research, that is, semiconductor exciton photonics. Research includes growth techniques for low dimensional or nano-scale structures by atomic-scale controlling of surfaces and interfaces together with excitonic and photonic properties.
Research in the group involves searching for new optoelectrical phenomenons in atomic structures, which result from new quantum phenomenons as well as the co-existence of light and electrons. Design of new optoelectronics devices.
Research areas include Parallel Processors, Super-Scalar Technology, Nano-Fabrication Technology, High Speed Devices, Smart Sensors, Interconnection Technology and Micromachining.
This PhD offers research in nanoscience and nanotechnologies which is excelled by the experimentalists in the Quantum Technology Centre and theorists in the Centre for Nanoscale Dynamics at Lancaster.
The Quantum Technology Centre contains state-of-the-art nanofabrication facilities, supported by molecular beam epitaxy reactors for atomic layer-by-layer growth of semiconductor nanostructures and devices. Fabrication techniques available include electron-beam lithography using a dedicated electron-beam writer, plasma processing and thin-film deposition. Electronic structures are measured at temperatures down to 10 mK and below by means of DC, microwave and pulse techniques. Photonic structures are characterized using a variety of specialist (0-17 Tesla) magneto-optics and (4-300 K) spectroscopy techniques, x-ray diffraction, electron microscopy and atomic force microscopy methods.
The interdisciplinary degree courses in nanotechnology at Leibniz Universität Hannover provide extensive training in the field of nanotechnology. The Faculties of Electrical Engineering and Computer Science, Mechanical Engineering, Mathematics and Physics, and Natural Sciences have combined forces to offer this joint program.