Nanotechnology Research - Universities

 

Showing results 1 - 10 of 13 for universities in New Jersey:

 
NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning.
The research in Prof. Dong Ko's group focuses on how we can utilize nanocrystals for direct conversion into electricity of two of the most important ubiquitous sources of free energy: sunlight and waste heat.
PRISM is a multidisciplinary research center at Princeton University in the general field of materials science through photonics with a special emphasis on the hard material - soft material interface.
The mission of NanoStructures Laboratory (NSL) is to explore and develop 1) New nanotechnologies that will fabricate structures substantially smaller, better, and cheaper than current technology permits. and 2) Innovative nanoscale electronic, optoelectronic, and magnetic devices by combining cutting-edge nanotechnology with frontier knowledge from different disciplines.
The Rutgers' MSE program encourages students to select an area of focus in one or more of the following areas: Biomaterials, Nanomaterials, Energy Conversion and Storage, Polymers, Electronic and Optical Materials, Packaging Materials.
The Hybrid Micro/Nanomanufacturing Laboratory at Rutgers Mechanical and Aerospace Engineering, led by Professor Jonathan P. Singer, seeks to translate the extraordinary properties demonstrated by functional nanostructures into mass manufactured, complex architectures. This is accomplished through combinations of bottom-up and top-down or large-area and small-area lithographic techniques.
The major research interests of the group are the design, fabrication, characterization and applications of various active nanostructures such as nanofibers, nanotubes, nanojunctions and nanotrees. The active materials currently under exploration include piezoelectric, piezoresistive or conductive, thermal electric and photovoltaic materials. The targeted applications of the various nanostructures developed are acoustic sensors for structural health monitoring, medical devices for thrombus retrieving, nanoacoustic waves for circulating cancer cell screening, chemical sensors for various gases and explosives, biosensors for stroke diagnostics, and energy scavenging involving mechanical-electric, thermoelectric, optoelectric and chemical-electric energy conversions.
Participation in the Nanotechnology Graduate Program leads to Masters of Science, Masters of Engineering, and Doctor of Philosophy in the respective disciplines with a designated nanotechnology concentration. To qualify for the nanotechnology concentration, in addition to satisfying disciplinary core requirements, candidates for Masters' degrees must complete the common core and a minimum of three elective courses and should attend regularly the seminar series in the Nanotechnology Curriculum.
Participation in the Nanotechnology Graduate Program leads to Masters of Science, Masters of Engineering, and Doctor of Philosophy in the respective disciplines with a designated nanotechnology concentration. To qualify for the nanotechnology concentration, in addition to satisfying disciplinary core requirements, candidates for Masters' degrees must complete the common core and a minimum of three elective courses and should attend regularly the seminar series in the Nanotechnology Curriculum.
The lab deals with Large-Area 3-D Nano-Patterning and Nanostructure Fabrication, Nanoscale Interfacial Phenomena, Multifunctional Superhydrophobic Surfaces, Microfluidic Self-Assembly of Nanomaterials, Nanofluidic Energy Harvesting, and Optofluidic Waveguides and Sensors.