Reference terms from Wikipedia, the free encyclopedia
 

Chromosomal crossover

Chromosomal crossover, or crossing over, is the exchange of genetic material during sexual reproduction between two homologous chromosomes' non-sister chromatids that results in recombinant chromosomes. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called synapsis. Synapsis begins before the synaptonemal complex develops and is not completed until near the end of prophase I. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.

Crossing over is described, in theory, by Thomas Hunt Morgan. He relied on the discovery of Frans Alfons Janssens who described the phenomenon in 1909 and had called it "chiasmatypie". The term chiasma is linked, if not identical, to chromosomal crossover. Morgan immediately saw the great importance of Janssens' cytological interpretation of chiasmata to the experimental results of his research on the heredity of Drosophila. The physical basis of crossing over was first demonstrated by Harriet Creighton and Barbara McClintock in 1931.

The linked frequency of crossing over between two gene loci (markers) is the crossing-over value . For fixed set of genetic and environmental conditions, recombination in a particular region of a linkage structure (chromosome) tends to be constant and the same is then true for the crossing-over value which is used in the production of genetic maps.

 
Note:   The above text is excerpted from the Wikipedia article Chromosomal crossover, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Diamond glitter: a play of colors with artificial DNA crystals

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers - a new approach for manufacturing semiconductors for visible light.

Scientists create an 'optical conveyor belt' for quasiparticles

Using interference between two lasers, scientists have created an 'optical conveyor belt' that can move polaritons in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Low-temperature pulse irradiation technique enables flexible optoelectronic devices

A new pulse irradiation technique synthesizes thin films at ultra-low temperatures, making it ideal for flexible optoelectronic devices and wearable electronics.

A golden key unlocks sharper imaging and faster scanning with X-rays

Scientists have made a breakthrough in significantly improving the sharpness of X-ray imaging and potentially boosting the speeds at which X-ray scans can be processed.

What is 'time' for quantum particles?

Quantum tunneling lets particles seem to move faster than light. Physicists now propose a new method to accurately measure tunneling time and control particle speed.

Breakthrough technique rapidly identifies topological 2D materials

Researchers have developed a new technique to quickly identify two-dimensional topological quantum materials, accelerating progress in this promising field of technology.

A surprising discovery: Magnetism in a common material for microelectronics

Physicists used neutron scattering to uncover magnetic order in single crystal NiSi that had not been previously known.

Self-assembling molecules enhance efficiency in solar cells

Self-assembling molecules form a single-molecule-thick layer, boosting solar cell efficiency by acting as electron-transporting layers and enabling more efficient tandem devices.

Engineering a new color palette for single-molecule imaging

Researchers outline a way to create dozens of new 'colors' to multiplex single-molecule measurements.

Scientists develop an affordable, chip-scale sensor for lead contamination

The could provide sensitive detection of lead levels in drinking water, whose toxicity affects 240 million people worldwide.