Reference terms from Wikipedia, the free encyclopedia
 

Deep sea fish

Deep-sea fish are animals that live in the darkness below the sunlit surface waters, that is below the epipelagic or photic zone of the sea. The lanternfish is, by far, the most common deep-sea fish. Other deep sea fishes include the flashlight fish, cookiecutter shark, bristlemouths, anglerfish, viperfish, and some species of eelpout.

Only about 2% of known marine species inhabit the pelagic environment. This means that they live in the water column as opposed to the benthic organisms that live in or on the sea floor. Deep-sea organisms generally inhabit bathypelagic (1000–4000m deep) and abyssopelagic (4000–6000m deep) zones. However, characteristics of deep-sea organisms, such as bioluminescence can be seen in the mesopelagic (200–1000m deep) zone as well. The mesopelagic zone is the disphotic zone, meaning light there is minimal but still measurable. The oxygen minimum layer exists somewhere between a depth of 700m and 1000m deep depending on the place in the ocean. This area is also where nutrients are most abundant. The bathypelagic and abyssopelagic zones are aphotic, meaning that no light penetrates this area of the ocean. These zones make up about 75% of the inhabitable ocean space.

The epipelagic zone (0–200m) is the area where light penetrates the water and photosynthesis occurs. This is also known as the photic zone. Because this typically extends only a few hundred meters below the water, the deep sea, about 90% of the ocean volume, is in darkness. The deep sea is also an extremely hostile environment, with temperatures that rarely exceed 3 °C (37.4 °F) and fall as low as −1.8 °C (28.76 °F) (with the exception of hydrothermal vent ecosystems that can exceed 350 °C, or 662 °F), low oxygen levels, and pressures between 20 and 1,000 atmospheres (between 2 and 100 megapascals).

 
Note:   The above text is excerpted from the Wikipedia article Deep sea fish, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Diamond glitter: a play of colors with artificial DNA crystals

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers - a new approach for manufacturing semiconductors for visible light.

Scientists create an 'optical conveyor belt' for quasiparticles

Using interference between two lasers, scientists have created an 'optical conveyor belt' that can move polaritons in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Low-temperature pulse irradiation technique enables flexible optoelectronic devices

A new pulse irradiation technique synthesizes thin films at ultra-low temperatures, making it ideal for flexible optoelectronic devices and wearable electronics.

A golden key unlocks sharper imaging and faster scanning with X-rays

Scientists have made a breakthrough in significantly improving the sharpness of X-ray imaging and potentially boosting the speeds at which X-ray scans can be processed.

What is 'time' for quantum particles?

Quantum tunneling lets particles seem to move faster than light. Physicists now propose a new method to accurately measure tunneling time and control particle speed.

Breakthrough technique rapidly identifies topological 2D materials

Researchers have developed a new technique to quickly identify two-dimensional topological quantum materials, accelerating progress in this promising field of technology.

A surprising discovery: Magnetism in a common material for microelectronics

Physicists used neutron scattering to uncover magnetic order in single crystal NiSi that had not been previously known.

Self-assembling molecules enhance efficiency in solar cells

Self-assembling molecules form a single-molecule-thick layer, boosting solar cell efficiency by acting as electron-transporting layers and enabling more efficient tandem devices.

Engineering a new color palette for single-molecule imaging

Researchers outline a way to create dozens of new 'colors' to multiplex single-molecule measurements.

Scientists develop an affordable, chip-scale sensor for lead contamination

The could provide sensitive detection of lead levels in drinking water, whose toxicity affects 240 million people worldwide.