Reference terms from Wikipedia, the free encyclopedia
 

Ecological succession

Ecological succession is the process of change in the species structure of an ecological community over time. The time scale can be decades (for example, after a wildfire), or even millions of years after a mass extinction.

The community begins with relatively few pioneering plants and animals and develops through increasing complexity until it becomes stable or self-perpetuating as a climax community. The "engine" of succession, the cause of ecosystem change, is the impact of established organisms upon their own environments. A consequence of living is the sometimes subtle and sometimes overt alteration of one's own environment.

It is a phenomenon or process by which an ecological community undergoes more or less orderly and predictable changes following a disturbance or the initial colonization of a new habitat. Succession may be initiated either by formation of new, unoccupied habitat, such as from a lava flow or a severe landslide, or by some form of disturbance of a community, such as from a fire, severe windthrow, or logging. Succession that begins in new habitats, uninfluenced by pre-existing communities is called primary succession, whereas succession that follows disruption of a pre-existing community is called secondary succession.

Succession was among the first theories advanced in ecology. Ecological succession was first documented in the Indiana Dunes of Northwest Indiana and remains at the core of much ecological science.

 
Note:   The above text is excerpted from the Wikipedia article Ecological succession, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Strengthener for graphene

New technique creates elastic, tough graphene films by linking layers.

Self-assembling and disassembling swarm molecular robots via DNA molecular controller

Researchers have succeeded in developing a DNA-based molecular controller. Crucially, this controller enables the autonomous assembly and disassembly of molecular robots, as opposed to manually directing it.

Artificial photosynthesis to produce hydrogen peroxide

Chemists have developed hexavalent photocatalytic covalent organic frameworks (COFs) which mimic natural photosynthesis for the production of hydrogen peroxide (H2O2), an important industrial chemical.

Researchers create nanocubes forming floating checkerboards via self-assembly

Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work presents a simple approach to create complex nanostructures through a technique called self-assembly.

New tool to detect protein-protein interactions promising for gene therapy and other treatments

Scientists have developed a faster, precise method to detect protein properties and interactions, advancing real-time monitoring of virus-cell interactions and gene therapy innovations.

A liquid crystal source of photon pairs

Researchers have demonstrated spontaneous parametric down-conversion in a liquid crystal for the first time, opening a path to efficient, electric-field tunable quantum sources, advancing quantum physics and technology.

Innovative graphene oxide sensor detects low concentrations of nitrate in water

A new study introduces a novel approach to nitrate ion detection using all-solid-state ion-selective electrodes enabled by graphene oxide as an ion-to-electron transducer.

Swimming microrobots deliver cancer-fighting drugs to metastatic lung tumors in mice

Engineers have developed microscopic robots, known as microrobots, capable of swimming through the lungs to deliver cancer-fighting medication directly to metastatic tumors.

Quantum dot based metasurface enables two objects to exist in the same space

The metasurface boosts photon emission coupling with its resonance mode, allowing precise light direction control. It achieves up to 25 times higher luminescence efficiency than previous methods.

Affordable and sensitive nanofiber piezoelectric sensors for human and robot motion monitoring

Researchers have developed a cost-effective, sensitive piezoelectric sensor using polyvinylidene fluoride nanofibers and dopamine, enhancing performance and stability for healthcare and robotics.