Reference terms from Wikipedia, the free encyclopedia
 

History of pseudoscience

The history of pseudoscience is the study of pseudoscientific theories over time. A pseudoscience is a set of ideas that presents itself as science, while it does not meet the criteria to properly be called such.

Distinguishing between proper science and pseudoscience is sometimes difficult. One popular proposal for demarcation between the two is the falsification criterion, most notably contributed to by the philosopher Karl Popper. In the history of pseudoscience it can be especially hard to separate the two, because some sciences developed from pseudosciences. An example of this is the science chemistry, which traces its origins from the protoscience of alchemy.

The vast diversity in pseudosciences further complicates the history of pseudoscience. Some pseudosciences originated in the pre-scientific era, such as astrology and acupuncture. Others developed as part of an ideology, such as Lysenkoism, or as a response to perceived threats to an ideology. An example of this is creationism, which was developed as a response to the scientific theory of evolution.

Despite failing to meet proper scientific standards, many pseudosciences survive. This is usually due to a persistent core of devotees who refuse to accept scientific criticism of their beliefs, or due to popular misconceptions. Sheer popularity is also a factor, as is attested by astrology which remains popular despite being rejected by a large majority of scientists.

 
Note:   The above text is excerpted from the Wikipedia article History of pseudoscience, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Strengthener for graphene

New technique creates elastic, tough graphene films by linking layers.

Self-assembling and disassembling swarm molecular robots via DNA molecular controller

Researchers have succeeded in developing a DNA-based molecular controller. Crucially, this controller enables the autonomous assembly and disassembly of molecular robots, as opposed to manually directing it.

Artificial photosynthesis to produce hydrogen peroxide

Chemists have developed hexavalent photocatalytic covalent organic frameworks (COFs) which mimic natural photosynthesis for the production of hydrogen peroxide (H2O2), an important industrial chemical.

Researchers create nanocubes forming floating checkerboards via self-assembly

Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work presents a simple approach to create complex nanostructures through a technique called self-assembly.

New tool to detect protein-protein interactions promising for gene therapy and other treatments

Scientists have developed a faster, precise method to detect protein properties and interactions, advancing real-time monitoring of virus-cell interactions and gene therapy innovations.

A liquid crystal source of photon pairs

Researchers have demonstrated spontaneous parametric down-conversion in a liquid crystal for the first time, opening a path to efficient, electric-field tunable quantum sources, advancing quantum physics and technology.

Innovative graphene oxide sensor detects low concentrations of nitrate in water

A new study introduces a novel approach to nitrate ion detection using all-solid-state ion-selective electrodes enabled by graphene oxide as an ion-to-electron transducer.

Swimming microrobots deliver cancer-fighting drugs to metastatic lung tumors in mice

Engineers have developed microscopic robots, known as microrobots, capable of swimming through the lungs to deliver cancer-fighting medication directly to metastatic tumors.

Quantum dot based metasurface enables two objects to exist in the same space

The metasurface boosts photon emission coupling with its resonance mode, allowing precise light direction control. It achieves up to 25 times higher luminescence efficiency than previous methods.

Affordable and sensitive nanofiber piezoelectric sensors for human and robot motion monitoring

Researchers have developed a cost-effective, sensitive piezoelectric sensor using polyvinylidene fluoride nanofibers and dopamine, enhancing performance and stability for healthcare and robotics.