Reference terms from Wikipedia, the free encyclopedia
 

Hydrogen-like atom

A hydrogen-like atom/ion (usually called a "hydrogenic atom") is any atomic nucleus bound to one electron and thus is isoelectronic with hydrogen. These atoms or ions can carry the positive charge e ( Z − 1), where Z is the atomic number of the atom.

Examples of hydrogen-like atoms/ions are hydrogen itself, He+, Li2+, Be3+ and B4+. Because hydrogen-like atoms/ions are two-particle systems with an interaction depending only on the distance between the two particles, their (non-relativistic) Schrödinger equation can be solved in analytic form, as can the (relativistic) Dirac equation. The solutions are one-electron functions and are referred to as hydrogen-like atomic orbitals.

Other systems may also be referred to as "hydrogen-like atoms", such as muonium (an electron orbiting an antimuon), positronium (an electron and a positron), certain exotic atoms (formed with other particles), or Rydberg atoms (in which one electron is in such a high energy state that it sees the rest of the atom practically as a point charge).

 
Note:   The above text is excerpted from the Wikipedia article Hydrogen-like atom, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Strengthener for graphene

New technique creates elastic, tough graphene films by linking layers.

Self-assembling and disassembling swarm molecular robots via DNA molecular controller

Researchers have succeeded in developing a DNA-based molecular controller. Crucially, this controller enables the autonomous assembly and disassembly of molecular robots, as opposed to manually directing it.

Artificial photosynthesis to produce hydrogen peroxide

Chemists have developed hexavalent photocatalytic covalent organic frameworks (COFs) which mimic natural photosynthesis for the production of hydrogen peroxide (H2O2), an important industrial chemical.

Researchers create nanocubes forming floating checkerboards via self-assembly

Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work presents a simple approach to create complex nanostructures through a technique called self-assembly.

New tool to detect protein-protein interactions promising for gene therapy and other treatments

Scientists have developed a faster, precise method to detect protein properties and interactions, advancing real-time monitoring of virus-cell interactions and gene therapy innovations.

A liquid crystal source of photon pairs

Researchers have demonstrated spontaneous parametric down-conversion in a liquid crystal for the first time, opening a path to efficient, electric-field tunable quantum sources, advancing quantum physics and technology.

Innovative graphene oxide sensor detects low concentrations of nitrate in water

A new study introduces a novel approach to nitrate ion detection using all-solid-state ion-selective electrodes enabled by graphene oxide as an ion-to-electron transducer.

Swimming microrobots deliver cancer-fighting drugs to metastatic lung tumors in mice

Engineers have developed microscopic robots, known as microrobots, capable of swimming through the lungs to deliver cancer-fighting medication directly to metastatic tumors.

Quantum dot based metasurface enables two objects to exist in the same space

The metasurface boosts photon emission coupling with its resonance mode, allowing precise light direction control. It achieves up to 25 times higher luminescence efficiency than previous methods.

Affordable and sensitive nanofiber piezoelectric sensors for human and robot motion monitoring

Researchers have developed a cost-effective, sensitive piezoelectric sensor using polyvinylidene fluoride nanofibers and dopamine, enhancing performance and stability for healthcare and robotics.