Reference terms from Wikipedia, the free encyclopedia
 

Oceanic trench

Oceanic trenches are topographic depressions of the seafloor, relatively narrow in width, but very long. These oceanographic features are the deepest parts of the ocean floor. Oceanic trenches are a distinctive morphological feature of convergent plate boundaries, along which lithospheric plates move towards each other at rates that vary from a few millimeters to over ten centimeters per year. A trench marks the position at which the flexed, subducting slab begins to descend beneath another lithospheric slab. Trenches are generally parallel to a volcanic island arc, and about 200 km (120 mi) from a volcanic arc. Oceanic trenches typically extend 3 to 4 km (1.9 to 2.5 mi) below the level of the surrounding oceanic floor. The greatest ocean depth measured is in the Challenger Deep of the Mariana Trench, at a depth of 11,034 m (36,201 ft) below sea level. Oceanic lithosphere moves into trenches at a global rate of about 3 km2/yr.

 
Note:   The above text is excerpted from the Wikipedia article Oceanic trench, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Diamond glitter: a play of colors with artificial DNA crystals

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers - a new approach for manufacturing semiconductors for visible light.

Scientists create an 'optical conveyor belt' for quasiparticles

Using interference between two lasers, scientists have created an 'optical conveyor belt' that can move polaritons in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Low-temperature pulse irradiation technique enables flexible optoelectronic devices

A new pulse irradiation technique synthesizes thin films at ultra-low temperatures, making it ideal for flexible optoelectronic devices and wearable electronics.

A golden key unlocks sharper imaging and faster scanning with X-rays

Scientists have made a breakthrough in significantly improving the sharpness of X-ray imaging and potentially boosting the speeds at which X-ray scans can be processed.

What is 'time' for quantum particles?

Quantum tunneling lets particles seem to move faster than light. Physicists now propose a new method to accurately measure tunneling time and control particle speed.

Breakthrough technique rapidly identifies topological 2D materials

Researchers have developed a new technique to quickly identify two-dimensional topological quantum materials, accelerating progress in this promising field of technology.

A surprising discovery: Magnetism in a common material for microelectronics

Physicists used neutron scattering to uncover magnetic order in single crystal NiSi that had not been previously known.

Self-assembling molecules enhance efficiency in solar cells

Self-assembling molecules form a single-molecule-thick layer, boosting solar cell efficiency by acting as electron-transporting layers and enabling more efficient tandem devices.

Engineering a new color palette for single-molecule imaging

Researchers outline a way to create dozens of new 'colors' to multiplex single-molecule measurements.

Scientists develop an affordable, chip-scale sensor for lead contamination

The could provide sensitive detection of lead levels in drinking water, whose toxicity affects 240 million people worldwide.