Reference terms from Wikipedia, the free encyclopedia
 

Parietal cell

Parietal cells (also known as oxyntic cells) are epithelial cells in the stomach that secrete hydrochloric acid (HCl) and intrinsic factor. These cells are located in the gastric glands found in the lining of the fundus and body regions of the stomach. They contain an extensive secretory network of canaliculi from which the HCl is secreted by active transport into the stomach. The enzyme hydrogen potassium ATPase (H+/K+ ATPase) is unique to the parietal cells and transports the H+ against a concentration gradient of about 3 million to 1, which is the steepest ion gradient formed in the human body. Parietal cells are primarily regulated via histamine, acetylcholine and gastrin signalling from both central and local modulators.

 
Note:   The above text is excerpted from the Wikipedia article Parietal cell, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Diamond glitter: a play of colors with artificial DNA crystals

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers - a new approach for manufacturing semiconductors for visible light.

Scientists create an 'optical conveyor belt' for quasiparticles

Using interference between two lasers, scientists have created an 'optical conveyor belt' that can move polaritons in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Low-temperature pulse irradiation technique enables flexible optoelectronic devices

A new pulse irradiation technique synthesizes thin films at ultra-low temperatures, making it ideal for flexible optoelectronic devices and wearable electronics.

A golden key unlocks sharper imaging and faster scanning with X-rays

Scientists have made a breakthrough in significantly improving the sharpness of X-ray imaging and potentially boosting the speeds at which X-ray scans can be processed.

What is 'time' for quantum particles?

Quantum tunneling lets particles seem to move faster than light. Physicists now propose a new method to accurately measure tunneling time and control particle speed.

Breakthrough technique rapidly identifies topological 2D materials

Researchers have developed a new technique to quickly identify two-dimensional topological quantum materials, accelerating progress in this promising field of technology.

A surprising discovery: Magnetism in a common material for microelectronics

Physicists used neutron scattering to uncover magnetic order in single crystal NiSi that had not been previously known.

Self-assembling molecules enhance efficiency in solar cells

Self-assembling molecules form a single-molecule-thick layer, boosting solar cell efficiency by acting as electron-transporting layers and enabling more efficient tandem devices.

Engineering a new color palette for single-molecule imaging

Researchers outline a way to create dozens of new 'colors' to multiplex single-molecule measurements.

Scientists develop an affordable, chip-scale sensor for lead contamination

The could provide sensitive detection of lead levels in drinking water, whose toxicity affects 240 million people worldwide.