Reference terms from Wikipedia, the free encyclopedia
 

Pit viper

The Crotalinae, commonly known as pit vipers, crotaline snakes (named for the Ancient Greek: κρόταλον krotalon castanet/rattle of a rattlesnake's tail), or pit adders, are a subfamily of venomous vipers found in Eurasia and the Americas. They are distinguished by the presence of a heat-sensing pit organ located between the eye and the nostril on both sides of the head. Currently, 22 genera and 151 species are recognized: These are also the only viperids found in the Americas. The groups of snakes represented here include rattlesnakes, lanceheads, and Asian pit vipers. The type genus for this subfamily is Crotalus, of which the type species is the timber rattlesnake, C. horridus.

These snakes range in size from the diminutive hump-nosed viper, Hypnale hypnale, that grows to an average total length (including tail) of only 30–45 cm (12–18 in), to the bushmaster, Lachesis muta, a species known to reach a maximum total length of 3.65 m (12.0 ft) in length.

What makes this subfamily unique is that all member species share a common characteristic: a deep pit, or fossa, in the loreal area between the eye and the nostril on either side of the head. These loreal pits are the external openings to a pair of extremely sensitive infrared-detecting organs, which in effect give the snakes a sixth sense to help them find and perhaps even judge the size of the small, warm-blooded prey on which they feed.

Osine triphosphate, monoamine oxidase, generalized esterases and acetylcholine esterase have also been found in it. When prey comes into range, infrared radiation falling onto the membrane allows the snake to determine its direction. Experiments have shown, when deprived of their senses of sight and smell, these snakes can strike accurately at moving objects less than 0.2 °C (0.36 °F) warmer than the background. The paired pit organs provide the snake with thermal rangefinder capabilities. These organs are of great value to a predator that hunts at night, as well as for avoiding the snake's own predators.

Among vipers, these snakes are also unique in that they have a specialized muscle, called the muscularis pterigoidius glandulae, between the venom gland and the head of the ectopterygoid. Contraction of this muscle, together with that of the m. compressor glandulae, forces venom out of the gland.

 
Note:   The above text is excerpted from the Wikipedia article Pit viper, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Diamond glitter: a play of colors with artificial DNA crystals

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers - a new approach for manufacturing semiconductors for visible light.

Scientists create an 'optical conveyor belt' for quasiparticles

Using interference between two lasers, scientists have created an 'optical conveyor belt' that can move polaritons in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Low-temperature pulse irradiation technique enables flexible optoelectronic devices

A new pulse irradiation technique synthesizes thin films at ultra-low temperatures, making it ideal for flexible optoelectronic devices and wearable electronics.

A golden key unlocks sharper imaging and faster scanning with X-rays

Scientists have made a breakthrough in significantly improving the sharpness of X-ray imaging and potentially boosting the speeds at which X-ray scans can be processed.

What is 'time' for quantum particles?

Quantum tunneling lets particles seem to move faster than light. Physicists now propose a new method to accurately measure tunneling time and control particle speed.

Breakthrough technique rapidly identifies topological 2D materials

Researchers have developed a new technique to quickly identify two-dimensional topological quantum materials, accelerating progress in this promising field of technology.

A surprising discovery: Magnetism in a common material for microelectronics

Physicists used neutron scattering to uncover magnetic order in single crystal NiSi that had not been previously known.

Self-assembling molecules enhance efficiency in solar cells

Self-assembling molecules form a single-molecule-thick layer, boosting solar cell efficiency by acting as electron-transporting layers and enabling more efficient tandem devices.

Engineering a new color palette for single-molecule imaging

Researchers outline a way to create dozens of new 'colors' to multiplex single-molecule measurements.

Scientists develop an affordable, chip-scale sensor for lead contamination

The could provide sensitive detection of lead levels in drinking water, whose toxicity affects 240 million people worldwide.