Reference terms from Wikipedia, the free encyclopedia
 

Sewage treatment

Sewage treatment (or domestic wastewater treatment, municipal wastewater treatment) is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable for discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There is a high number of sewage treatment processes to choose from. These can range from decentralized systems (including on-site treatment systems) to large centralized systems involving a network of pipes and pump stations (called sewerage) which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant.

A large number of sewage treatment technologies have been developed. Very broadly, they can be grouped into high tech (high cost) versus low tech (low cost) options, although some technologies might fall into either category. To decide which sewage treatment process to choose engineers and decision makers need to take into account technical and economical criteria, as well as quantitative and qualitative aspects of each alternative.: 215  Often, the main criteria for selection are: desired effluent quality, expected construction and operating costs, availability of land, energy requirements and sustainability aspects. For example, broadly speaking, the activated sludge process achieves a high effluent quality but is relatively expensive and energy intensive compared to waste stabilization ponds which are a low cost treatment option but require a lot of land. In developing countries and in rural areas with low population densities, sewage is often treated by various on-site sanitation systems and not conveyed in sewers. These systems include septic tanks connected to drain fields, on-site sewage systems (OSS), vermifilter systems and many more. An advanced, fairly expensive, sewage treatment plant in a high-income country may include primary treatment to remove solid material, secondary treatment to digest dissolved and suspended organic material, tertiary treatment to remove the nutrients nitrogen and phosphorus, disinfection and possibly even a fourth treatment state to remove micropollutants (although this is still rare).

At the global level, an estimated 52% of sewage is treated. However, sewage treatment rates are highly unequal for different countries around the world. For example, while high-income countries treat approximately 74% of their sewage, developing countries treat an average of just 4.2%.

The treatment of sewage is part of the field of sanitation. Sanitation also includes the management of human waste and solid waste as well as stormwater (drainage) management. The term "sewage treatment plant" is often used interchangeably with the term "wastewater treatment plant".

 
Note:   The above text is excerpted from the Wikipedia article Sewage treatment, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Ion irradiation offers promise for 2D material probing

New research shows that fast electronic processes in two-dimensional materials like graphene can be studied by irradiating them with ions, paving the way for advanced technologies.

Researchers develop world's smallest quantum light detector on a silicon chip

Researchers have demonstrated the integration of a quantum light detector - smaller than a human hair - onto a silicon chip, moving us one step closer to the age of quantum technologies using light.

Diamond glitter: a play of colors with artificial DNA crystals

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers - a new approach for manufacturing semiconductors for visible light.

Scientists create an 'optical conveyor belt' for quasiparticles

Using interference between two lasers, scientists have created an 'optical conveyor belt' that can move polaritons in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Low-temperature pulse irradiation technique enables flexible optoelectronic devices

A new pulse irradiation technique synthesizes thin films at ultra-low temperatures, making it ideal for flexible optoelectronic devices and wearable electronics.

A golden key unlocks sharper imaging and faster scanning with X-rays

Scientists have made a breakthrough in significantly improving the sharpness of X-ray imaging and potentially boosting the speeds at which X-ray scans can be processed.

What is 'time' for quantum particles?

Quantum tunneling lets particles seem to move faster than light. Physicists now propose a new method to accurately measure tunneling time and control particle speed.

Breakthrough technique rapidly identifies topological 2D materials

Researchers have developed a new technique to quickly identify two-dimensional topological quantum materials, accelerating progress in this promising field of technology.

A surprising discovery: Magnetism in a common material for microelectronics

Physicists used neutron scattering to uncover magnetic order in single crystal NiSi that had not been previously known.

Self-assembling molecules enhance efficiency in solar cells

Self-assembling molecules form a single-molecule-thick layer, boosting solar cell efficiency by acting as electron-transporting layers and enabling more efficient tandem devices.