Reference terms from Wikipedia, the free encyclopedia
 

Total iron-binding capacity

Total iron-binding capacity (TIBC) or sometimes transferrin iron-binding capacity is a medical laboratory test that measures the blood's capacity to bind iron with transferrin. Transferrin can bind two atoms of ferric iron (Fe3+) with high affinity. It means that transferrin has the capacity to transport approximately from 1.40 to 1.49 mg of iron per gram of transferrin present in the blood.

It is performed by drawing blood and measuring the maximum amount of iron that it can carry, which indirectly measures transferrin since transferrin is the most dynamic carrier. If TIBC values are known, the transferrin concentration can be estimated with the following formulas:

To measure TIBC in the blood is less expensive than a direct measurement of transferrin.

The TIBC should not be confused with the unsaturated iron-binding capacity or UIBC (LOINC 2501-5, 22753-8 & 35216-1). The UIBC is calculated by subtracting the serum iron from the TIBC.

 
Note:   The above text is excerpted from the Wikipedia article Total iron-binding capacity, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Variety in building block softness makes for softer amorphous materials

New model for disordered solids reveals traits behind microscopic force transmission.

New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques

Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.

Tweaking isotopes sheds light on promising approach to engineer semiconductors

Researchers demonstrated that small changes in the isotopic content of thin semiconductor materials can influence their optical and electronic properties, possibly opening the way to new and advanced designs with the semiconductors.

Towards transparent and antimicrobial surfaces for touch displays

Researchers developed a durable and transparent antimicrobial surface containing copper nanoparticles. The nanostructured surface was obtained by dewetting ultrathin metal copper films on a glass substrate.

Physicists arrange atoms in extremely close proximity

The technique opens possibilities for exploring exotic states of matter and building new quantum materials.

Researchers unlock potential of 2D magnetic devices for future computing

Researchers created an innovative method to control tiny magnetic states within ultrathin, two-dimensional van der Waals magnets - a process akin to how flipping a light switch controls a bulb.

Nanotechnology opens door to future of insulin medication

The new nano carrier, tested in mice, rats and baboon animal models, could help people with diabetes avoid side-effects linked to insulin injections such as hypoglycemia (a low blood sugar event, when too much insulin has been injected).

Scientists show that there is indeed an 'entropy' of quantum entanglement

Researchers confirm entropy rule in quantum entanglement to enhance understanding and future quantum computers.

Nature-inspired geometric designs for economical self-assembling materials

Geometric motifs from nature shape new efficient self-assembling spongy materials with precise structural control.

Smart learning algorithm achieves first high-res 3D chemical imaging at one-nanometer scale

By leveraging knowledge of the imaging process and taking a new approach to tomographic reconstruction, researchers are now able to simultaneously image structure and chemical composition with high resolution in 3D.