Reference terms from Wikipedia, the free encyclopedia
 

Ultimate tensile strength

Ultimate tensile strength (UTS), often shortened to tensile strength (TS), ultimate strength, or Ftu within equations, is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials the ultimate tensile strength is close to the yield point, whereas in ductile materials the ultimate tensile strength can be higher.

The ultimate tensile strength is usually found by performing a tensile test and recording the engineering stress versus strain. The highest point of the stress–strain curve is the ultimate tensile strength and has units of stress. The equivalent point for the case of compression, instead of tension, is called the compressive strength.

Tensile strengths are rarely of any consequence in the design of ductile members, but they are important with brittle members. They are tabulated for common materials such as alloys, composite materials, ceramics, plastics, and wood.

 
Note:   The above text is excerpted from the Wikipedia article Ultimate tensile strength, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Variety in building block softness makes for softer amorphous materials

New model for disordered solids reveals traits behind microscopic force transmission.

New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques

Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.

Tweaking isotopes sheds light on promising approach to engineer semiconductors

Researchers demonstrated that small changes in the isotopic content of thin semiconductor materials can influence their optical and electronic properties, possibly opening the way to new and advanced designs with the semiconductors.

Towards transparent and antimicrobial surfaces for touch displays

Researchers developed a durable and transparent antimicrobial surface containing copper nanoparticles. The nanostructured surface was obtained by dewetting ultrathin metal copper films on a glass substrate.

Physicists arrange atoms in extremely close proximity

The technique opens possibilities for exploring exotic states of matter and building new quantum materials.

Researchers unlock potential of 2D magnetic devices for future computing

Researchers created an innovative method to control tiny magnetic states within ultrathin, two-dimensional van der Waals magnets - a process akin to how flipping a light switch controls a bulb.

Nanotechnology opens door to future of insulin medication

The new nano carrier, tested in mice, rats and baboon animal models, could help people with diabetes avoid side-effects linked to insulin injections such as hypoglycemia (a low blood sugar event, when too much insulin has been injected).

Scientists show that there is indeed an 'entropy' of quantum entanglement

Researchers confirm entropy rule in quantum entanglement to enhance understanding and future quantum computers.

Nature-inspired geometric designs for economical self-assembling materials

Geometric motifs from nature shape new efficient self-assembling spongy materials with precise structural control.

Smart learning algorithm achieves first high-res 3D chemical imaging at one-nanometer scale

By leveraging knowledge of the imaging process and taking a new approach to tomographic reconstruction, researchers are now able to simultaneously image structure and chemical composition with high resolution in 3D.