Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 151 - 175 of 497 for research and community organizations starting with U:

 
The group's research is motivated by how light interacts with matter on the nanoscale. The main research direction focuses on taking advantage of efficient light-matter interactions for applications in novel nanoscale devices and sensors. Towards that end, the group explores integrating nanoelectronic and nanomechanical effects with nanophotonic devices to achieve hybrid devices with new functionality. They also investigate unique optical properties of graphene and emerging two-dimensional direct bandgap semiconductor materials for novel sensors and devices.
UC San Diego established the Department of NanoEngineering within its Jacobs School of Engineering effective July 1, 2007. The department will cover a broad range of topics, but focus particularly on biomedical nanotechnology, nanotechnologies for energy conversion, computational nanotechnology, and molecular and nanomaterials.
The group of Prof. Zhang works on the design, synthesis, characterization and evaluation of lipid- and/or polymer-based nanostructured biomaterials. One specific interest lies in developing nanomaterials for healthcare and other medical applications, for example, drug delivery to improve or enable treatments of human diseases. In addition, they also seek to understand the fundamental sciences underlying the arenas of nanomedicine.
Plans are currently underway to develop graduate curricula leading to the M.S. and Ph.D. degrees in NanoEngineering by 2011. Until NanoEngineering graduate programs are in place, students wishing to pursue nanoengineering as a graduate focus are encouraged to apply to related graduate programs in bioengineering, chemical engineering, and mechanical and aerospace engineering. Transfer to NanoEngineering will be considered upon approval of its degree programs.
Studies in the Desai laboratory focus on the design, fabrication, and use of advanced micro/nano biosystems.
The Center for Nanomedicine is dedicated to developing the next generation of diagnostics, therapies, and ultimately cures for human diseases, improving the quality of life, and creating a legacy for humanity.
The Center for Spintronics and Quantum Computation is part of the California NanoSystems Institute (CNSI) based at the University of California, Santa Barbara. This multidisciplinary research center provides a focus for rapidly expanding research, education and training in spin-based electronics and quantum computation, with an emphasis on the potential realization in coherent electronic, magnetic and photonic nanostructures.
Mission: Using microfluidic technologies, electrokinetics, and spectroscopy to develop tools for chemical detection, cellular discovery, and electronics cooling applications.
The research interest of Kaustav Banerjee's group include nanometer scale issues in CMOS VLSI as well as circuits and systems issues in emerging nanoelectronics. He is currently involved in exploring the physics, technology, and applications of carbon nanomaterials for next-generation green electronics.
The UCSB Nanofabrication Facility offers expertise in compound semiconductor-based device fabrication providing a full range of processes to the scientific and research communities.
The Cleland group pursues research in two distinct areas: 1) Quantum-limited behavior of electronic and mechanical systems, and 2) Developing tools for biophysical and biomedical applications.
The nanopore project at UC Santa Cruz has pioneered the use of ion channels for the analysis of single RNA and DNA molecules.
The center's mission is the development of optofluidic devices and their application to single particle studies in molecular biology and biomedical diagnostics.
This course provides an up-to-date overview of the rapidly developing area of bionanotechnology. Learn from a leading academic in the field who is based at the internationally recognised Department of Chemical Engineering and Biotechnology at the University of Cambridge. The course is grounded in biomedical applications but the techniques you will learn are applicable to a range of industries including energy, agriculture and the environment. The interdisciplinary approach will allow you to develop a network of potential future collaborators.
The Master's Programme in Micro- and Nanotechnology Enterprise is an opportunity in which world-leading scientists and successful entrepreneurs are brought together to deliver a one-year Master's degree, which combines an in-depth multidisciplinary scientific programme with a global perspective on the commercial opportunities and business practice necessary for the successful exploitation in the rapidly developing fields of nanotechnology and microelectromechanical systems (MEMS).
NanoPhotonics explores how new materials can be created, in which the interaction between light and matter is fundamentally altered to produce fascinating and useful new effects.
The PhD programme is based on courses, practicals and projects in Year 1 before selection of an interdisciplinary PhD topic for research in Years 2-4 in a Nano group within Physics, Chemistry, Engineering, Materials or another department. A significant element will be a Management of Technology Innovation (MoTI) component provided through the Judge Business School.
The Centre provides open access to over 300 researchers from a variety of University Departments to the nanofabrication and characterisation facilities housed in a combination of Clean Rooms and low noise laboratories. Office space is primarily home to the Department of Engineering's Nanoscience Group.
The ANAM initiative seeks to convert the promise offered by CNTs into commercial reality. This project directly addresses the industrial utilization of CNTs and seeks to close the gap between academic achievement and commercial return.
Various research projects on nanoscience and nanotechnology.
The group has a wide interest in many aspects of electron microscopy, but particularly in high-resolution imaging, electron holography, electron tomography, energy loss imaging and spectroscopy.
Dr. Simon Brown's group main research interest is in the properties of nanometre scale particles (called 'atomic clusters') and in developing ways of building nano-electronic devices from these clusters.
Biomaterials and nanomedicine are the research area in Mehdi Razavi's lab and efforts lie at the interface of musculoskeletal tissue engineering and regenerative medicine. Work is in progress in the following areas: magnesium composite implants, and ultrasound-responsive gene delivery systems.
The Master of Science in Nanotechnology program provides students with scientific knowledge and research training in nanoscience and nanotechnology. The program prepares students for seeking employment in industry and academia involved in nanotechnology research, product development and commercialization, or to pursue advanced Ph.D. degrees in related areas.
The NSTC applies multidisciplinary expertise in nanoscale science and technology to problems of regional, state, and national significance.