Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1 - 25 of 52 for research and community organizations starting with F:

 
Der Studiengang Bio- und Nanotechnologien fasst die Schlüsseltechnologien Biotechnologie, Umwelttechnik, Nano- und Oberflächentechnik zusammen.
FAST-DOT is an experimental program funded under the Seventh Framework Programme of the European Union to: Enable widespread application and further development of laser based photonics; Demonstrate new applications of lasers in biotechnology and medical fields; Develop new industrially integrated design rules for the production of specific quantum dot materials; Unlock the potential of quantum dot materials in biophotonics; Accelerate the implementation of quantum dot lasers through European SMEs and companies; Train a new generation of researchers in the range of new technological areas for quantum dot devices.
Three laboratories make up the center: the Nanomaterial Laboratory, Nanobiomedical Laboratory and Nanoelectronic Laboratory. They relate to research/development of new materials, biomedicine and light and display and energy respectively.
FIBLYS (or FIB anaLYSis) is a European funded project where leading researches and industry collaborate to create a new apparatus for nanotechnology that will unite nano-structuring, nano-manipulation, nano-analytic and nano-vision capabilities in one unique 'multi-nano' tool. It is based on a dual Focused Ion Beam (FIB) and Scanning Electron Microscope (SEM) together with Scanning Probe Microscope (SPM) and optional possibility of important analytical capabilities such as Energy Dispersive X-ray Spectroscopy (EDX), 3D Electron Backscatter Diffraction (EBSD), Time-of-Flight Mass Spectrometry (TOFMS), Electron Beam Induced Current (EBIC) or Cathodoluminescence (CL).
Finland is one of the leading European countries in nanotechnology research. FinNano is a new technology programme established by Tekes to accelerate and improve the competitiveness of nanotechnology research in Finland.
The idea of this portal is to be the entrance to the Finnish micro- and nanotechnology world.
Flamac's objective is to become a competence centre in 'High Throughput Methodologies' to support research for the materials industry. Research includes Synthesis and characterization of submicron metal-oxide coatings via chemical vapor deposition.
The objective of FLEXONICS is the development of ultra-high barrier nanoscale films for r2r encapsulation of flexible electronics.
The FlexTech Alliance is the only organization headquartered in North America exclusively devoted to fostering the growth, profitability and success of the electronic display and flexible, printed electronics supply chain. Leveraging its rich history in promoting the display industry as the U.S. Display Consortium, the FlexTech Alliance offers expanded collaboration between and among industry, academia, and research organizations for advancing displays and flexible, printed electronics from R&D to commercialization.
Nanotechnology is a specialisation within a Bachelor of Science (Honours). This specialisation is also available within the 3 year Bachelor of Science.
Nanotechnology is a specialisation within a Bachelor of Science. This specialisation is also available within the 4 year Bachelor of Science (Honours). This degree will equip you to be a part of this new industrial revolution. You will graduate ready to start working in a variety of scientific professions and to play a leading role in the future as nanotechnology grows, matures and reveals its full potential. Nanotechnology draws on the strengths of all the basic sciences and the course will give you a strong background in these sciences. In particular, there is an emphasis on developing computational skills and an awareness of the roles and uses of computers in science and society. From Second Year you will choose to specialise in one of two areas: Biomedical Nanotechnology; Quantum Nanostructures.
The Center's mission is to apply world-class, fundamental research and knowhow to provide novel, robust solutions to the challenges facing Australia, in the general areas of energy, health and water.
Students will develop the capacity to understand the basic scientific concepts underpinning nanoscience and the properties of materials and biomaterials at the atomic/molecular level and the scaling laws governing these properties. They will understand current frontier developments in nanotechnology, and recognise and develop novel and innovative ideas using a range of laboratory methods, specifically the fabrication and characterisation tools used in nanotechnology such as various microscopies, surface modifications and molecular level construction methods.
Students will develop the capacity to understand the basic scientific concepts underpinning nanoscience and the properties of materials and biomaterials at the atomic/molecular level and the scaling laws governing these properties. They will understand current frontier developments in nanotechnology, and recognise and develop novel and innovative ideas using a range of laboratory methods, specifically the fabrication and characterisation tools used in nanotechnology such as various microscopies, surface modifications and molecular level construction methods.
This facility is an open-access initiative in support of nano-scale devices, systems and materials research that encompasses a broad range of technologies and capabilities. The facility provides nanofabrication, analytical instrumentation, materials characterization and process-development laboratories for students, faculty and industrial researchers.
The research of the group interfaces with biomedical engineering, nanobiotechnology, electrochemistry, BioMEMS, biochemistry, nanomedicine, surface science, and materials science. The work done here looks ahead to the next generation of nanoelectrical components such as protein nanowires, DNA transistors as well as end use electronic devices such as Lab-on-Chip, biosensors and enzymatic biofuel cells.
The High-Performance Materials Institute at Florida State University is the pioneer in the process for manufacturing of carbon nanotube 'buckypapers'. The center has other research on-going in areas of nanotube systhesis, growth and nanocomposites.
INSI is an interdisciplinary initiative at Florida State University to foster a world-class program in the exciting emergent area of bio-nanoscience. The initiative builds on a solid foundation in bio-nanoscience at FSU that evolved from existing strengths in materials science, molecular and cell biology, chemical and biomedical engineering, chemistry and biochemistry, and physics.
Nanotechnology is one of the key areas of research at Martech.
FONAI's mission is to: Sensitize the whole of Africa and the Caribbean on nanotechnology by means of lectures, seminars, workshops and publications; Draft proposals that will involve a grand alliance of academia, government agency and industry; Set-up Nanotech Research Centers of Excellence around specific themes like nanomaterial synthesis, nanoscale fabrication of devices, nanoscale studies of phenomena and processes, nanomanufacturing, etc.
The Bavarian research cooperation for miniaturised analysis techniques using nanotechnology.
The group is developing methods to sort carbon nanotubes according to their electronic properties, developing techniques for parallel assembling of carbon nanotubes, organic molecules and inorganic nanorods into functional units,and studying the electronic and optical properties of sorted carbon nanotube material, single-tube devices and nanotube-molecule hybrids.
The research activities of the Helmholtz Young Investigators group 'Metamaterials for Photonics' lead by Dr. Stefan Linden and Prof. Dr. Martin Wegener are devoted to fabrication and optical characterization of functional metallic nanostructures for optical frequencies.
The Nano- and Microsystems Program is aimed at developing application-tailored solutions. The group is pursuing interdisciplinary approaches based on a pool of technologies comprising mechanical, optical, magnetic, fluidic, electrical, materials science, and information technology competences. Our approach is characterized by the use of nanoscaled functional entities (materials, structures, components) in particular to develop innovative and economically attractive solutions.
FramingNano is an FP7 project funded by the European Commission. Its primary mission is to facilitate an international multi-stakeholder dialogue aimed at framing future regulatory actions that will foster the responsible development of nanotechnology.
 
 
left arrowBack to Nanotechnology Links Directory