Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 926 - 950 of 1697

 
Building upon the Institute's traditional strengths in materials science and engineering, Rensselaer researchers are part of a pre-eminent group of scientists around the world working to manipulate matter with atomic precision. With an NSF Nanoscale Science and Engineering Center on campus, a new microelectronics clean room capable of fabrication on the nano-level, and a talented group of biotechnology researchers bringing nano-capabilities to their work, Rensselaer has taken a place at the heart of what has been framed by some as the next 'industrial revolution'.
The Center is primarily involved with fundamental nanotechnology research in materials, devices and systems. By combining computational design with experimentation the Center's researchers are discovering novel pathways to assemble functional multiscale nanostructures with junctions and interfaces between structurally, dimensionally, and compositionally different nanoscale building blocks to create useful hierarchical material systems.
RTI International is one of the world's leading research institutes, dedicated to improving the human condition by turning knowledge into practice. Research at RTI includes nanofibers, nanomembranes and other nanomaterials and naotechnology applications.
The Rhode Island Consortium for Nanoscience and Nanotechnology was established in 2010 by Congress as a joint entity between the University of Rhode Island and Brown University.
Research in RQI encompasses advanced materials, quantum magnetism, plasmonics and photonics, biophysics, ultracold atom physics, condensed matter and chemical physics, and all aspects of nanoscience and nanotechnology.
Upon completing the BA degree with a major in Materials Science and Nanoengineering, students will demonstrate an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
The Center for Biological and Environmental Nanotechnology (CBEN) is a National Science Foundation (NSF) funded Nanoscale Science and Engineering Center (NSEC) at Rice University. Aiming to transform nanoscience into a field with the impact of a modern-day polymer science, CBEN focuses on research at the interface between "dry" nanomaterials and aqueous media such as biology and the environment, developing the nanoscience workforce of the future, and transferring discoveries to industry
Faculty in the Department of Materials Science and NanoEngineering hold joint appointments in several other departments: mechanical engineering, bioengineering, chemistry, chemical and biomolecular engineering, electrical and computer engineering, civil and environmental engineering and physics and astronomy.
The Halas Nanophotonics Group at Rice University
Dedicated to the development of optics at the nanoscale
Upon completing the MMSNE degree, students will be able to acquire broad, advanced knowledge within either Materials Science or NanoEngineering, which is also in-depth in one major sub-discipline of the field; and conduct research at an advanced level in at least one area of Materials Science and Nanoengineering.
The Hafner Nano-Bio Lab at Rice University works at the Nano-Bio interface.
The Nanomaterials, Nanomechanics and Nanodevices lab (N3L) at Rice University is led by Prof. Jun Lou. Their interests lie in the areas of nanomaterial synthesis, nanomechanical characterization and nanodevice fabrication for energy, environmental and biomedical applications.
NEWT headquarters are at Rice University, but this interdisciplinary nanosystems engineering research center includes Arizona State University, University of Texas at El Paso and Yale University. They use nanotechnology to develop water treatment systems of all kinds.
NEWT is applying nanotechnology to develop transformative and off-grid water treatment systems that both protect human lives and support sustainable economic development.
The worlds of science and business are merging and a new breed of scientist, manager and policy maker is emerging. These new professionals are PSM graduates who can serve companies in today's competitive market needing managers with scientific knowledge who understand the business world and can effectively lead by applying their unique background to their organization's needs. In response to these needs, the Wiess School of Natural Sciences established the Professional Master's Program, offering a degree in Nanoscale Physics.
The Institute's mission is to provide a venue where researchers from all disciplines of science and engineering can come together to share ideas and discuss their views and prospects of nanoscience, nanoengineering, and nanotechnology.
The Tour group at Rice University. Scientific research areas include molecular electronics, chemical self-assembly, conjugated oligomers, electroactive polymers, combinatorial routes to precise oligomers, polymeric sensors, flame retarding polymer additives, carbon nanotube modification and composite formation, synthesis of molecular motors and nanotrucks, use of the NanoKids concept for K-12 education in nanoscale science.
The group's research focuses on the development of functional oxides based thin film devices utilizing photonic, electronic, and magnetic properties; the fabrication of conducting oxide based superstructure and their potential investigation as thermoelectric materials; the development of special epitaxial growth method; and the development of novel oxide spintronics devices.
The group explores advanced molecular photonics based on semiconducting quantum dots, photofunctional organic molecules, and laser manipulation techniques.
The group's research focuses on plasmonics for photochemistry and photophysics, including following sub-topics: Plasmonic Waveguiding; Single Molecule Studies; Plasmon Associated Energy Harvesting; Drug Delivery System based on Plasmonics.
Researchers in the lab are involved in a variety of research aimed at integrating and combining top-down and bottom-up phenomena.
The lab is researching inorganic optical material with its robust frame structure, and are conducting research on the expression of optical functions through formation of nanostructures on the surface.
Nanochemistry and materials - plasma and powders.
RIKEN carries out high level experimental and research work in a wide range of fields, including physics, chemistry, medical science, biology, and engineering, covering the entire range from basic research to practical application.