Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

Nanotechnology Research Laboratories

 

Showing results 16 - 30 of 64 for research and community organizations in Massachusetts:

 
The Westervelt Group has three areas of focus: 1) Imaging the coherent flow of electrons inside semiconductor nanostructures at low temperatures using scanning probe microscopy; 2) Studies of tunnel-coupled quantum dots and the fabrication of artificial molecules composed of few-electron quantum dots to implement qubits for quantum information processing; 3) Development of micro-electromagnets to trap, move, and assemble particles.
The Zhuang research lab works on the forefront of single-molecule biology and bioimaging, developing and applying advanced optical imaging techniques to study the behavior of individual biological molecules and complexes in vitro and in live cells.
InterNano is an open-source online information clearinghouse for the nanomanufacturing research and development community in the United States. It is designed to provide this community with an array of tools and collections relevant to its work and to the development of viable nanomanufacturing applications.
The Nanotechnology Program at CMIR at Harvard University develops, optimizes and validates creative approaches to diagnosis and treatment of human disorders
The Bawendi research group at MIT
The Belcher Group at MIT is using nature as a guide to develop novel electronic and magnetic materials and to pattern materials on the nanoscale.
ISN's charge is to pursue a long-range vision for how technology can make soldiers less vulnerable to enemy and environmental threats. The ultimate goal is to create a 21st century battlesuit that combines high-tech capabilities with light weight and comfort.
As a part of the condensed matter theory division at MIT, the Joannopoulos Research Group is actively researching a variety of complex systems from an ab initio standpoint. Most of the investigations fall into the broad categories of photonic crystals and optics or atomic systems and electronic structure.
The mission of the Varanasi Group is to bring about transformational efficiency enhancements in various industries including energy (power generation to oil and gas to renewables), water, agriculture, transportation and electronics cooling by fundamentally altering thermal-fluid-surface interactions across multiple length and time scales.
The research in the Laboratory for Multiscale Regenerative Technologies is focused on the applications of micro- and nanotechnology to tissue repair and regeneration. The long-term goals are to improve cellular therapies for liver disease, develop enabling tools to systematically study the fate of stem cells, and design multifunctional nanoparticles for cancer applications.
The Mechatronics Research Laboratory (MRL) is devoted to the control, system dynamics and design challenges associated with the fields of nanotechnology, biotechnology and robotics. Current research includes control techniques of atomic force microscopes (AFM) to improve imaging, using the AFM to sequence DNA, filtering of nano-scale biomolecules in fluidic suspension, and design of energy-efficient robotics.
The Nanoscale Sensing group applies microfabrication technologies towards the development of novel methods for probing biological systems. Current projects focus on using electrical and mechanical detection schemes for analyzing biomolecules and single cells.
The Micro and Nano Engineering area at MIT's Department of Mechanical Engineering seeks to create new engineering knowledge and products on the micro and nano-scale.
The Microfluidics and Nanofluidics Research Group at MIT is focused on understanding and controlling transport phenomena in fluidic systems at the micro and nano length scales.
The NECST Consortiumís technology focus is to improve the performance of advanced aerospace materials/structures through strategic use of carbon nanotubes (CNTs) combined with traditional advanced composites to form hybrid architectures. Two primary 3D nano-engineered architectures are being explored and developed, both polymer-matrix based. The fabrication strategy involves novel synthesis of high-quality, long (several millimeters), aligned CNTs placed strategically in existing advanced composite systems. Early results have demonstrated that high-quality CNT/traditional hybrid composite laminates can be architected and fabricated at rates and scales that can be used in full-scale aerospace structures; this made the formation of the NECST industry Consortium imperative.
 
 
left arrowBack to Nanotechnology Links Directory