Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

Nanotechnology Research Laboratories


Showing results 31 - 45 of 67 for research and community organizations in Massachusetts:

The Micro and Nano Engineering area at MIT's Department of Mechanical Engineering seeks to create new engineering knowledge and products on the micro and nano-scale.
The Microfluidics and Nanofluidics Research Group at MIT is focused on understanding and controlling transport phenomena in fluidic systems at the micro and nano length scales.
The NECST Consortiumís technology focus is to improve the performance of advanced aerospace materials/structures through strategic use of carbon nanotubes (CNTs) combined with traditional advanced composites to form hybrid architectures. Two primary 3D nano-engineered architectures are being explored and developed, both polymer-matrix based. The fabrication strategy involves novel synthesis of high-quality, long (several millimeters), aligned CNTs placed strategically in existing advanced composite systems. Early results have demonstrated that high-quality CNT/traditional hybrid composite laminates can be architected and fabricated at rates and scales that can be used in full-scale aerospace structures; this made the formation of the NECST industry Consortium imperative.
The Nanoengineering Group is part of the Mechanical Engineering Department at MIT. Their research is focused on nanoscale energy transport, conversion, and storage.
A state-of-the-art laboratory in the Department of Materials Science and Engineering at MIT for probing the properties and surfaces of engineering and biological materials at atomic and molecular length scales through mechanical contact.
The research group of Prof. Nicholas Fang is dedicated to multidisciplinary fields including nano-optics, photonic/acoustic metamaterials, as well as life sciences. They aim to study the fundamental physics of nano-optics and its application in super-resolution imaging, high-speed/low-cost optical modulation device, high sensitivity biology sensor, etc. High-throughput micro/nano-fabrication techniques are developed to manufactore novel 2D/3D structures. They are the pioneer of acoustic metamaterial study to demonstrate the negative index and super-resolution focusing in ultrasonic wave.
The Nanostructures Laboratory (NSL) at MIT develops techniques for fabricating surface structures with feature sizes in the range from nanometers to micrometers, and uses these structures in a variety of research projects. The NSL is closely coupled to the Space Nanotechnology Laboratory (SNL) with which it shares facilities and a variety of joint programs.
The group of Vladimir Bulovic is developing practical devices/structures from physical insights discovered at the nanoscale.† Their work demonstrates that nanoscale materials such as molecules, polymers, and nanocrystal quantum dots can be assembled into large area functional optoelectronic devices that surpass the performance of today's state-of-the-art.† They combine insights into physical processes within nanostructured devices, with advances in thin film processing of nanostructured material sets, to launch new technologies, and glimpse into the polaron and exciton dynamics that govern the nanoscale.
Research in the Jarillo-Herrero group lies in the area of experimental condensed matter physics, in particular quantum electronic transport in novel low dimensional nanomaterials such as graphene and carbon nanotubes.
Their research is focused on fabrication of devices that exploit the quantum-mechanical properties of materials. Because superconductors provide an ideal medium for studying quantum mechanics in the solid state, they focus on superconductive materials.
A cross-disciplinary research lab at MIT inventing self-assembly and programmable material technologies aimed at reimagining construction, manufacturing, product assembly and performance.
The SNL is the premier laboratory in the world for research in interference lithography and diffraction grating fabrication.
This website is a portal to research in nano- and micro-scale technologies within the MIT School of Engineering. A School-wide initiative, Tiny Technologies, or 'TT,' seeks, through advanced, interdisciplinary research, to create new knowledge and novel technologies in the fast-moving fields of nano- and micro-scale technologies.
The central goals of the NCI funded MIT-Harvard CCNE are to rapidly translate recent advances in nanotechnology for use in the diagnosis and treatment of cancer, and to develop the next generation of nanomaterials for this purpose.
This inter-departmental Center brings together, MIT researchers and industrial partners to advance the science and engineering of graphene-based technologies. The Center explores advanced technologies and strategies that enable graphene-based materials, devices and systems to provide discriminating or break-through capabilities for a variety of system applications ranging from energy generation and smart fabrics and materials, to RF communications and sensing.
left arrowBack to Nanotechnology Links Directory