Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

Nanotechnology Research Laboratories

 

Showing results 61 - 75 of 111 for research and community organizations in California:

 
The Nanoscale Materials Science Graduate Certificate offers an opportunity to acquire the knowledge and skills needed to understand the present and potential applications of these rapidly developing nano-materials technologies.
The Quantum Information Science group at Stanford University, lead by Professor Yoshihisa Yamamoto, conducts the basic research on quantum optics, semiconductor mesoscopic physics, nuclear and electron spin resonance, with emphasis on quantum information system applications.
The center on Functional Engineered Nano Architectonics (FENA) aims to create and investigate new nano-engineered functional materials and devices, and novel structural and computational architectures for new information processing systems beyond the limits of conventional CMOS technology.
The Center for Cell Control is working on an unprecedented approach to first utilize systems control, with therapeutic intent, to determine the parameters for guiding the cell to a directed phenotype/genotype which will then be followed by in depth study, using nanoscale modalities, of the path by which this desired state is achieved. This approach will enable engineering systems that can be applied towards the regulation of a spectrum of cellular functions, such as cancer eradication, controlling viral infection onset, and stem cell differentiation.
The Nanoelectronics Research Facility is part of the Elecetrical Engineering Department at the University of California, Los Angeles.
The Photonics Laboratory at UCLA performs multi-disciplinary research and development in the fields of silicon photonics, microwave photonics, and biophotonics for biomedical and defense applications. The Lab has two complementary missions. The first is to solve critical problems faced by defense, commercial industries, and medicine through innovative approaches that enable revolutionary advances in devices or systems. The second and equally important mission is to produce creative and highly skilled scientists and engineers who will be the driving force for technological innovation in the 21st century.
The Stoddart research group at the UCLA Chemistry & Biochemistry Department
Research interests include Signal Transduction, Protein Lipidation and Prenyltransferase Inhibitors, Nanodelivery of Anticancer Drugs.
Research in the group focuses around two intertwined goals. These are first, to create complex materials with nanoscale periodicity using self-organization, and second, to produce new physical properties because of that nanoscale architecture.
Vaults are components of cells that were first described in 1986. Because the particle is abundant in all cells of higher organisms and highly conserved throughout evolution, it is likely that the function of the vault is important to life. This website is designed for the educated non-scientist. It summarizes the present state of knowlege of this fascinating particle.
The Western Institute of Nanoelectronics (WIN), a National Institute of Excellence, has been organized to build on the best interdisciplinary talents in the field of nanoelectronics in the world. WIN's mission is to explore and develop advanced research devices, circuits and nanosystems with performance beyond conventional scaled CMOS.
The Center for Environmental Implications of Nanotechnology (CEIN) explores the impact of libraries of engineered nanomaterials on a range of cellular lifeforms, organisms and plants in terrestrial, fresh water and sea water environments. By being able to predict which nanomaterial physicochemical properties are potentially hazardous, the CEIN will be able to provide advice on the safe design of engineered nanomaterials from an environmental perspective.
Research areas: Nano-to-microscale quantitative biophysics and bioengineering. Single-molecule interactions. Biomembrane mechanics. Cell adhesion and cellular shape and motion. Design and advancement of nano-to-micromechanical core technologies: Dynamic force spectroscopy. Dynamic tension spectroscopy. Biomembrane force probe. Optical tweezers. Automated micromanipulation and micropipette aspiration.
The Micro-Nano Innovations (MiNI) Laboratory, led by Dr. Tingrui Pan, is an incubator for exploratory interdisciplinary research bridging nanoengineering and biomedicine. They endeavor to develop novel micro-nanoengineered platforms for contemporary biological applications, to deliver innovative engineered solutions to pressing medical problems, and to educate next-generation bioengineers for future healthcare.
Current project include: Nanograined Solid Electrolytes (SEs) for Solid Oxide Fuel Cells (SOFCs); One Dimensional Nanostructured Conductors; Proton Conducting Ceramic Membranes.
 
 
left arrowBack to Nanotechnology Links Directory