Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

Nanotechnology Research Laboratories

 

Showing results 76 - 90 of 110 for research and community organizations in California:

 
Seung-Wuk Lee's research group uses chemical and biological approaches to create precisely defined nanomaterials, to investigate complex phenomena at their interfaces, and to develop novel, biomimetic, functional materials. Specifically, they focus on bone and its basic building blocks to study the fundamental mechanisms of bone mineralization and resorption and to develop bioinspired functional materials and devices.
CONSRT is a ground-breaking, DARPA-funded, nano-opto center with 10 professors from 6 universities and expertise ranging from materials, physics, chemistry, and devices, at a funding level of ~$6.5M including industrial and institutional support. CONSRT's vision is to advance nanostructured optoelectronic materials and devices to enable breakthrough functionalities in sensing, imaging, processing and communication microsystems with greatly reduced power, size, and weight.
The general theme of the lab is molecular contruction and assembly.
Professor Jeffrey Bokor's group at Berkeley.
The Yang research group is interested in the synthesis of new classes of materials and nanostructures, with an emphasis on developing new synthetic approaches and understanding the fundamental issues of structural assembly and growth that will enable the rational control of material composition, micro/nano-structure, property and functionality.
The Designated Emphasis in Nanoscale Science and Engineering program at UC Berkeley is crafted around a set of educational principles that will motivate physical science and engineering students to acquire an understanding of the capabilities, as well as the limitations, of each other's fields. The basic themes of study focus on the synthesis, characterization, fabrication, and modeling of nanostructured materials and devices.
Xiang Zhang's research lab at UC Berkeley.
The Zettl research group in the Department of Physics at U.C. Berkeley and in the Materials Sciences Division of Lawrence Berkeley National Laboratory currently investigates electronic, magnetic and mechanical properties of nanoscale materials such as fullerenes, carbon and non-carbon nanotubes.
The group works at the intersection of physics, chemistry, biology, and materials science. They use a multidisciplinary approach to design, synthesize, and characterize biologically inspired materials for applications in unconventional electronic devices.
The mission of INRF is to develop and promote engineered nanoscale systems through research, education and outreach.
David Kisailus' lab is involved in the structure-function relationships in biomineralized tissues and the biologically inspired and mimetic synthesis of nano-scaled materials for energy-based applications.
The Bockrath research group at CalTech
Initially the Center is focusing on carbon, silicon and biology as these three areas already make compelling arguments for the power of the nanoscale world, and because these areas fall within the campus' existing expertise. The case for nanotechnology is often made by reference to biology, where processing is frequently carried out at the level of individual molecules on the nanometer length scale. This thrust for CNSE is predicated on the idea that biology is the theater in which nanotechnology will have its first successful applications. This follows from the fact that biology is the premier example of nanoscale science and engineering, and also because biology is currently the most important driver of the research enterprise.
The group's goal is to understand and exploit phenomena that arise from quantum confinement of atoms and molecules to reduced dimensions, so as to engineer new classes of electronic and electromechanical devices.
The Graduate Program offers training leading to the degrees of M.S. and Ph.D. in Chemical and Environmental Engineering. Taking advantage of the complementary skills and expertise of the faculty, our graduate students pursue interdisciplinary and often collaborative research at the frontiers of chemical and environmental engineering. One of the main research areas includes Advanced Materials and Nanotechnology.
 
 
left arrowBack to Nanotechnology Links Directory