Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1 - 25 of 1159

 
The DNI coordinates and develops efforts at Drexel University in the broad and interdisciplinary area of nanoscale science and engineering, including research, undergraduate and graduate education, technology transfer, outreach, and dissemination.
The Aachen Graphene & 2D-Materials Center is exploits the unique properties of graphene, two-dimensional (2D)-materials and 2D-heterostructures for different applications in the fields of electronics, sensors and photonics.
This programme focuses strongly on researching and building hardware for these technologies, paving the way for a fluent shift towards a career in the industry or an academic postgraduate path.
The vision of CDNA is exploring fundamental aspects of DNA as a programmable tool for directing the assembly of molecules and materials into nanoarchitectures and functional structures.
iNANO commands a variety of facilities for the synthesis of nanostructured/nanopatterned 0D (i.e. nanoparticle), 1D, 2D and 3D materials. These include: equipment for electrospinning, photo- and electron beam-lithography, nanoparticle synthesis (supercritical synthesis), solid-phase peptide synthesis, DNA modification, bioreactors for large-scale protein expression, isotope labelling, and procedures for synthesis of functionalized nanoparticles for targeted drug delivery and bioimaging, aptamers, etc.
The main goal of NBMC activity is to stimulate an interdisciplinary research and provide trainings on both master and doctoral level in the field of nanoscience and nanotechnology.
The institute has started a M.Tech Course in Nanotechnology in November, 2003. The program comprises of conceptual knowledge of nanoscience and nanotechnology, including preparation of nanomaterials, their characterization and applications.
The programme at the Amity Institute of Nanotechnology comprises of conceptual knowledge of nanoscience and nanotechnology, including preparation of nanomaterials, their characterization and applications. Our eminent faculty takes care of teaching and training the students in the frontier areas of nanotechnology and they have drawn a noteworthy syllabus for the entire course.
The M.Sc. - Nanoscience by Research is a two year full-time degree program from Amity University
The programme at the Amity Institute of Nanotechnology comprises of conceptual knowledge of nanoscience and nanotechnology, including preparation of nanomaterials, their characterization and applications. Our eminent faculty takes care of teaching and training the students in the frontier areas of nanotechnology and they have drawn a noteworthy syllabus for the entire course.
The Amrita Nano Biomedical Engineering Centre, or ANBEC, has been established to conduct research and development work on devices and components at the interface between biology, medicine and engineering, where nanoscience and technology can provide a significant value added benefit over existing technologies.
This M.Sc. program will provide training in the field of Molecular Medicine. Molecular medicine is the study of molecular and cellular phenomena in biological systems that enhances our understanding of human diseases and facilitates discovery research in disease prevention, diagnosis and therapy. Molecular Medicine offers new scientific tools to address mechanistic aspects of different diseases, both in diagnostics and therapy.
This is a two year course in Nanoscience and Nanotechnology with an application focusing on energy science such as Photovoltaics, Batteries, Supercapacitors, Hydrogen Storage and Carbon Capture. There are basic foundation courses in Physics and materials, followed by subject core courses dealing with nanotechnology specialization such as design of nanosystems, nanomaterials and their processing, properties and characterization, applications of nanomaterials to energy, etc.
The course is designed in such a way that students can explore in depth the application of nanotechnology to biomedical areas. The applications include new implant technologies, regenerative engineering, new nanomedicines to combat cancer and drug resistance, targeted medicines for treatment with reduced side effects, diagnostic technologies using nanomaterials etc.
The laboratory has an experience of over fifteen years in thin films & coatings technology, fabrication of nanostructured materials, developing/deploying in-situ & real-time monitoring techniques and in Nanometrology. LTFN programs strive to interact with industry and to transfer its technology to industrial users and developers and provide excellently educated graduates and research associates to society.
Interdepartmental-interscientific postgraduate course
The Biodesign Institute at ASU addresses today?s critical global challenges in healthcare, sustainability and security by developing solutions inspired from natural systems and translating those solutions into commercially viable products and clinical practices.
The primary aim of the Center for Bioelectronics and Biosensors is to create powerful bioassays for point-of-care diagnostics and a variety of advanced handheld, environmental field microanalyzers. By interfacing three advanced technologies - nanomaterials, biomaterials and electronic transducers - the researchers have the ability to create enhanced biosensors and nanobioelectronics.
Designed as a boundary organization at the interface of science and society, CNS-ASU provides an operational model for a new way to organize research through improved reflexiveness and social learning which can signal emerging problems, enable anticipatory governance, and, through improved contextual awareness, guide trajectories of NSE knowledge and innovation toward socially desirable outcomes, and away from undesirable ones.
The purpose of this program is to examine ethical challenges posed by emerging technologies, including nanotechnology, neurotechnology, biotechnology, robotics and advanced information and communication technology.
Professor Kaushal Rege's group is active in various fields of nanobiotechnoloy.
ASU's NanoFab is a flexible foundry, offering state-of-the-art device processing and characterization tools to individuals and companies who need occasional or recurring access to such facilities.
The department carries out a significant research body in nanotechnology and nanosciences.
Extensive research into the design, growth and fabrication of semiconductor and optical devices on the nanometer scale using techniques ranging from MOCVD growth to ion beam processing. Such devices by virtue of their scale, exploit quantum effects to enhance their performance. A large part of this research program focuses on quantum well lasers and detectors of importance to the telecommunications industry. They also research the nanoscale modification of bulk materials such as nanocrystals within semiconductors induced by ion irradiation.
At the Australian National University (ANU), carbon nanotubes, Boron Nitride (BN) nanotubes, nanoparticles, nanowires and other nanomaterials have been produced by using a high-energy ball milling and annealing method, which was developed by the group in 1998.