Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1 - 20 of 20 for university labs starting with O:

 
EMNLAB is a group within the physical electronics branch of Electrical Engineering at The Ohio State University. The group focuses on using a wide array of analysis, processing, and growth techniques to investigate the surface, interface, and ultrathin film properties of semiconductors.
The goal of the center is to create devices that will make diagnosing, treating and managing diseases easier, less expensive and more effective.
The group's research is focused on the computational analysis of the flow, heat and mass transfer in micro and nano fluidic systerms. Current research projects include modeling of an implantable artifical kidney, DNA translocation in nanopores and fundamental issues associated with bio-sensing.
A major nanoprobe laboratory with a focus on bio/nanotechnology and biomimetics was organized in July 1991 with the initial financial support from the state of Ohio and The Ohio State University. More than 5700 square feet of laboratory space was made available for this purpose. The laboratory is populated with the modern scientific equipment needed to conduct state-of-the-art research.
ENCOMM NanoSystems Laboratory is operated by the OSU Center for Electronic and Magnetic Nanoscale Composite Multifunctional Materials. Its goal is to provide academic and industrial users with access to advanced material characterization and fabrication tools for research and development applications.
The center facility for nanotech research at Ohio State.
Atomistic Construction of Nanostructures and Nanoscale Devices
Nanoscale research at Ohio University's Department of Physics.
Der Studiengang vermittelt Kenntnisse und Fähigkeiten in der Herstellung, Prüfung, Verarbeitung und Verwendung von Werkstoffen, z.B. von Metallen, Kunststoffen, Nichtmetallisch-Anorganischen Werkstoffen und Werkstoffen der Verbund- und Nanotechnologie.
This research unit studies the structural, magnetic, electronic, chemical properties and applications of size selected monometallic, bimetallic and core–shell nanoclusters/nanoparticles prepared by magnetron sputter gas aggregation source.
The group is working on a range of projects that involve growth, fabrication, modeling and characterization of nano to micro scale structures and devices.
The central theme of the group's research program is the development and application of cutting-edge bio- and nano- technologies and ultrasensitive analytical methodologies to address fundamental and practical questions in chemical, biochemical and biomedical research.
Ultra high spatial-resolution and sensitivity for sensing biomolecules and DNA can be achieved by the use of nanotechnology such as scanning probe techniques and non-linear photonics using ultra short pulsed lasers. The Group is evolving these techniques to create new biological applications, particularly, real-time measurement of the chemical reactions occurring in living cells and tissue.
LaSIE is doing some of the world's frontier research in photonics, nanotechnology (nanophotonics, nanofabrication), and bio-related areas.
The Nanoscience and Nanotechnology Center proactively promotes industrial applications of nanotechnology while carrying out bottom-up and top-down technologies.
The Protonic NanoMachine Group aims at the ultimate understanding of the mechanisms of self-assembly and its regulation, conformational switching, force generation, and energy transduction by biological macromolecular complexes.
Research in the group focuses mainly on molecular signaling systems that transmit and convert cell and gene information, in which dynamic organization into the bio-system is deeply related to the function. Techniques including imaging technique of single molecules in 3D and real time aer being developed to visualize and manipulate single molecules in bio-systems and the behavior, structural changes and physical and chemical properties of individual bio-molecules acting in bio-molecular systems will be monitored in real time and space.
Graduates who receive the Associate in Applied Science degree from OSU Institute of Technology in Nanoscientific instrumentation will be prepared for a career in such wide-ranging fields as aerospace, explosive detection and protection, manufacturing, biosystems, instrumentation, energy conservation, and agriculture.
The group is working on Rotary Molecular Motors. In particular the Bacterial Flagellar Motor and F1-ATPase. The aim is to try and understand how these living machines work.
The course consists of three modules: The Wider Context of Nanotechnology; The Fundamental Science of Nanotechnology; Fundamental Characterisation for Nanotechnology.
 
 
left arrowBack to Nanotechnology Links Directory