Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

 

Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 51 - 75 of 75 for university labs starting with N:

 
The Materials and Nanotechnology Program at North Dakota State University is an interdisciplinary Graduate Program spanning several Colleges and Centers, but sustained primarily by the College of Science and Mathematics, the College of Engineering and Architecture, and the Center for Nanoscale Science and Engineering. Both PhD and Masterís degrees are offered.
Cross disciplinary in nature, the AAS-T degree combines elements of materials science, chemistry, biology and physics, electronics and engineering. Students will be exposed to clean room procedures including an understanding and maintenance of nano/micro fabrication and characterization equipment.
The CHN is a nanoscale science and engineering center at Northeastern in partnership with U. of Massachusetts Lowell and the U. of New Hampshire.
The center aims to perform studies on the border between two fast growing scientific areas, Biotechnology and Nanomedicine.
The George J. Kostas Nanoscale Technology and Manufacturing Research Center is the primary facility for micro and nanofabrication at Northeastern University. The Kostas facility also serves as the main facility for the new NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN) at Northeastern University, in partnership with the University of Massachusetts Lowell, and the University of New Hampshire.
IGERT Nanomedicine Science and Technology program at Northeastern University is a new integrated doctoral education program in the emerging field of Nanomedicine, created with support from the National Cancer Institute and the National Science Foundation.
The two year program will provide graduates with the skills to operate systems and equipment associated with Canada's emerging nanotechnology industry and lead to a Diploma in Nanotechnology Systems.
Wide range of nanoscience research
NUANCE Center integrates three existing complementary instrumentation facilities at NU: EPIC, NIFTI, and Keck-II under a unified management umbrella, and consolidated into contiguous space. These three facilities are a unique, centralized, resource for the NU community and beyond.
The area of concentration in nanoscale physics prepares students to investigate structures and systems at the interface of classical and quantum physics at nanometer length scales. It provides a hands-on, inter-disciplinary introduction to the cutting-edge science and technologies associated with exploring nanoscale phenomena. This area of concentration is especially well-suited for physics majors with inter-disciplinary career interests in biology, chemistry, and/or engineering.
The Bio-inspired Sensors and Optoelectronics Lab (BISOL) has a general goal of producing novel photonics and optoelectronic devices inspired by nature. Current research is focused on infrared detectors and vision systems, nano-scale lasers, visible to terahertz plasmonics, and novel nano-processing.
The Center for Nanofabrication and Molecular Self-Assembly (NAMSA), one of the first federally and privately funded nanotechnology facilities of its kind in the nation, is home to scientists and engineers dedicated to the pursuit of new technologies.
The center's mission is to pursue academic excellence and high-level research in compound semiconductor science and nanotechnology.
The Grzybowski Research Group at Northwestern University aims at (i) understanding self-assembly (SA) and self-organization (SO) in both equilibrium and nonequilibrium ensembles at various length-scales and (ii) applying SA/SO in practical applications ranging from micro and nanotechnology through biology to societal/global issues.
The Hersam Research Group at Northwestern University develops scanning probe microscopy (SPM) techniques that enable sensing, characterization, and actuation at the single molecule level.
The Institute for Nanotechnology was established as an umbrella organization for the multimillion dollar nanotechnology research efforts at Northwestern University. The role of the Institute is to support meaningful efforts in nanotechnology, house state-of-the-art nanomaterials characterization facilities, and nucleate individual and group efforts aimed at addressing and solving key problems in nanotechnology.
The MEMS and Nanomechanics group is focused on characterizing mechanical behavior and properties of materials at small scale, biomaterials and artificial bio-inspired materials, materials at high strain rates, and on developing the expertise and tools to address micro and nanoscale fabrication and testing.
The research of the Mirkin Research Group at Northwestern focuses on developing methods for controlling the architecture of molecules and materials on the 1-100 nm length scale, and utilizing such structures in the development of analytical tools that can be used in the areas of chemical and biological sensing, lithography, catalysis, and optics.
The group's vision is to develop innovative technologies that harness biomolecular activity perfected by nature towards applications in cellular interrogation, bio-energetic/functional materials development, and next-generation medicine.
The Nanoscale Science and Engineering Center (NSEC) for Integrated Nanopatterning and Detection Technologies is driven by a vision to develop innovative biological and chemical detection systems capable of revolutionizing a variety of fields.
The goal of the Seideman groups work at Northwestern is to understand, control and utilize molecular dynamics in different environments. To that end we develop and apply quantum mechanical, semiclassical and classical methods in both time and energy domains.
The Stupp laboratory at Northwestern University
The 5-year programme is supported on a solid foundation of courses within physics, chemistry and mathematics. These are combined with courses in electronics and materials science that are oriented towards technology to give a good grounding for further studies in nanotechnology. The programme provides the theoretical basis and knowledge of experimental methods and technological applications of nanotechnology. The social implications of nanotechnology pertaining to ethical and environmental issues are also addressed. The first two years are common for all students in the programme. In the last three years, students choose their main profile from key areas relating to research, business and industry.
The aim of NTNU NanoLab is to establish a cross-disciplinary research environment for researchers within the fields of physics, chemistry, biology, electrical engineering, materials technology and medical research.
The convergence of multiple disciplines creates a synergy capable of overcoming persistent barriers and filling knowledge gaps to allow for transformational, revolutionary, and embryonic opportunities with many technological applications. The Institute's tools and research methodologies include in-depth analysis using convergence of multi/trans-disciplinary S&T fields, focused on nanotechnology, biotechnology, information technology, cognitive sciences, artificial intelligence, robotics, and genetics.
 
 
left arrowBack to Nanotechnology Links Directory