Nanotechnology Research in

 

Showing results of 927 for research and community organizations in :

 
The network brings together well established research groups and industrial concerns in complementary fields of precision engineering and nanometrology in the UK.
The CFN (Center for Functional Nanostructures), located at the University of Karlsruhe (TH) and the Forschungszentrum Karlsruhe GmbH (Research Center Karlsruhe), is an interdisciplinary research center dedicated to fundamental and applied research in some of the most fascinating fields in nanotechnology.
Zum Wintersemester 2009/10 startet der Studiengang Bachelor of Science Nanostrukturwissenschaften.
One of CINSaT's main characteristics is the broad interdisciplinary scope, participating disciplines ranging from physics, chemistry, biology and philosophy to mechanical, civil, and electrical engineering, including the Institute of Nanostructure Technology and Analytics (INA). Research of the center is accompanied by an interdisciplinary diploma course of studies Nanostructure and Molecular Science.
Within the Institute, a modern cleanroom up to class 1 exists, enabling the application of various modern nanostructure technologies, for example molecular beam epitaxy (MBE), ion beam deposition (IBD). Different other deposition technologies and etching processes in combination with optical and electron beam lithogrophy provide a key feature for the development of optoelectronic devices and nanosystem applications.
In 2 Jahren, wenn die ersten Bachelor Absolventen in den Nanostrukturwissenschaften zu erwarten sind, also im Wintersemester 2012/13 startet der Studiengang Master of Science Nanostrukturwissenschaften.
Various research topics dealing with nanocomposites, nanostructures on crystals and other nanotech.
Nanostructure production and investigation of their fundamental properties and impact on the fields of electronics, mechanics, optics, fluidics, and sensor technology.
This Centre of Excellence for Basic Research in Nanoscale Physics and Applications is a multi-disciplinary research division at Faculty of Physics and Mathematics, University of Latvia. Seven groups of the Institute are studying the hottest topics of atomic/ molecular physics and atmospheric/stellar spectroscopy and developing new optical methods/devices for industrial, environmental and medical applications.
Nanomaterials; particularly electronic, ionic, and optical.
The SOMS Centre is an interdisciplinary research centre where chemists, physicists, biologists and engineers seek to understand the science of molecular self-assembly and self-organisation, to engineer new functional exploitable materials and devices.
This interdisciplinary group is researching the formation, structure, dynamics and interactions of matter at the molecular and nanoscale.
For many years, the group's research theme has been the resonant interaction of electromagnetic waves, or photons, with condensed matter, consisting in most cases of organic molecules. Photons can be simply absorbed by matter, they can flip spins in a magnetic field in Electron Paramagnetic Resonance (EPR), or excite the electron cloud in optical absorption experiments. However, many of the effects they look at are more complex, nonlinear. They study, for example, the effect of two frequencies on spin echoes in EPR, the emission of light at wavelengths different from that of the excitation laser (fluorescence), and the effect of spin resonance on this emission (optically detected magnetic resonance, ODMR), or phenomena involving two or more photons, such as spectral hole-burning.
Research on the investigation of novel photonic and electronic semiconductor materials and phenomena and the development of devices for key areas such as internet communication, data storage, displays, illumination, environmental monitoring and life sciences.
The group research Interests are in Semiconductor Nanocrystals and Nanowires with emphasis on Synthesis, Assembly and Device Applications in Energy Storage and Energy Conversion Applications. The group also studies nucleation and growth in both hard (metal, semiconductor) and soft (pharmaceutical) nanocrystal materials with emphasis on size, shape and crystal phase control.