Nanotechnology Research in

 

Showing results of 930 for research and community organizations in :

 
For many years, the group's research theme has been the resonant interaction of electromagnetic waves, or photons, with condensed matter, consisting in most cases of organic molecules. Photons can be simply absorbed by matter, they can flip spins in a magnetic field in Electron Paramagnetic Resonance (EPR), or excite the electron cloud in optical absorption experiments. However, many of the effects they look at are more complex, nonlinear. They study, for example, the effect of two frequencies on spin echoes in EPR, the emission of light at wavelengths different from that of the excitation laser (fluorescence), and the effect of spin resonance on this emission (optically detected magnetic resonance, ODMR), or phenomena involving two or more photons, such as spectral hole-burning.
Research on the investigation of novel photonic and electronic semiconductor materials and phenomena and the development of devices for key areas such as internet communication, data storage, displays, illumination, environmental monitoring and life sciences.
The group research Interests are in Semiconductor Nanocrystals and Nanowires with emphasis on Synthesis, Assembly and Device Applications in Energy Storage and Energy Conversion Applications. The group also studies nucleation and growth in both hard (metal, semiconductor) and soft (pharmaceutical) nanocrystal materials with emphasis on size, shape and crystal phase control.
Accelerating materials discovery through collocation of industry and academia, and the use of robotics and high-performing computing.
The programme starts in late September each year and is divided into three approximately equal periods. The first and second periods consist of lectures, laboratory classes, seminars and similar material. In the third period, students undertake an individually supervised project on a topic relevant to their special interests.
The current research themes of the SSRC cut across the disciplines of chemistry, physics, biology and materials science, and combine the efforts of both experimentalists and theoreticians. The overarching ambition of this work is to achieve nanoscale control, design and assembly of function.
Researchers at the Center for Soft Nanoscience (SoN) prepare synthetic materials based on biological models such as addressable nanocontainers or materials that switch their function in response to an external trigger. Besides these fundamental investigations, the high-precision tools required to make and analyze these nanomaterials are developed at the SoN.
The research of the Interface Physics Group is dedicated to the exploration of new nanoscale phenomena and their application to nanotechnology.
Porous materials are omnipresent in nature: microporous materials, such as zeolite minerals, with pores of angstrom, molecular dimensions; mesoprous materials, such as cell membranes, with nanometre-sized pores; macroporous materials, such as diatom skeletons, with micron-sized pores. Synthetic analogues of such materials are prepared and studied here and find many industrial uses in for instance catalysis, water treatment, environmental clean-up, molecular separation and opto-electronics.
The goal of the centre is to create an easy-to-access-and-use, multidisciplinary workshop with extensive facilities, that allows researchers to fabricate, visualise and characterise structures and devices containing individual elements from a few microns down to 10 nm in size.
The group's research activities cover a range of topics concerned with the fundamental materials and physics issues surrounding advanced semiconductor devices, novel high speed electronic and optoelectronic devices, and advanced sensors and systems.
The Nano Engineering & Storage Technology (NEST) research group (formerly the Electronic & Information Storage Systems Research Group) has research interests in nano fabrication for data storage and advanced sensors applications and the investigation of data storage systems in general. The NEST group is housed in an integrated suite of staff offices, general-purpose laboratory space and class 100/1000 cleanrooms and is a founder member of the Manchester Centre for Mesoscience and Nanotechnology (CMN) where the ground-breaking Nobel prize winning work on Graphene by Andre Geim and Konstantin Novoselov was undertaken.
EPSRC CDT in the Science and Applications of Graphene and Related Nanomaterials (GrapheneNOWNANO) is a newly established Centre for Doctoral Training (CDT) based at the University of Manchester in partnership with Lancaster University. It builds on the world-leading expertise in the science and technology of graphene and other two-dimensional (2D) materials at Manchester and Lancaster to offer a broad interdisciplinary CDT.
The Nanostructured Materials research degrees are part of a large and multidisciplinary activity within the School of Materials. We have strong links with industry and leading research councils.
The Nanostructured Materials research degrees are part of a large and multidisciplinary activity within the School of Materials. We have strong links with industry and leading research councils.