Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 26 - 50 of 1248

 
ASU's NanoFab is a flexible foundry, offering state-of-the-art device processing and characterization tools to individuals and companies who need occasional or recurring access to such facilities.
The Australian Institute for Nanoscale Science and Technology (AINST) is the University of Sydney's latest step in the creation of flexible, interdisciplinary institutes that are devoted to bringing the best people and infrastructure together in the support of frontier research.
The department carries out a significant research body in nanotechnology and nanosciences.
Extensive research into the design, growth and fabrication of semiconductor and optical devices on the nanometer scale using techniques ranging from MOCVD growth to ion beam processing. Such devices by virtue of their scale, exploit quantum effects to enhance their performance. A large part of this research program focuses on quantum well lasers and detectors of importance to the telecommunications industry. They also research the nanoscale modification of bulk materials such as nanocrystals within semiconductors induced by ion irradiation.
At the Australian National University (ANU), carbon nanotubes, Boron Nitride (BN) nanotubes, nanoparticles, nanowires and other nanomaterials have been produced by using a high-energy ball milling and annealing method, which was developed by the group in 1998.
Primary goal of the center is to transfer the technology of validated theory and computational tools from the academic-based Center to the practitioners' development environment which is nanotechnology-based industry.
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in this exciting area and will have the knowledge and skills to enable them to design and build microscale devices.
BICAMN includes focus areas in 'Nanodevices' and in 'Nanomaterials' that explore the basic science of nanoscale magnetism and optics and the structural details of novel nanoparticles and nanoscale thin films.
Inspired by the natural biological materials, such as the spider silk, lotus root silk, shells, Professor Cheng's group is focused on bioinspired polymer nanocomposites, including assembly, design and physical properties investigation. Different nanomaterials, such as montmorillonite, carbon nanotubes and graphene oxide, are utilized as building blocks for constructing polymer nanocomposites.
The center is doing research in the areas of quantum computing, scanning probe nanotechnology, silicon-based optoelectronics, silicon quantum well devices, silicon and germanium structures.
The institute deals with nanotechnologies and photonic crystal research.
The scientific community grouped under the Ilse Katz Center aims to develop excellent, innovative fundamental research in the field of nano-scaled materials, that will lead to the opening of new technological horizons.
The group focuses on the development of a new classes of nanomaterials for optical, electrical and energy related applications.
Berkeley is transitioning the Berkeley Microlab into the Marvell Nanolab.
Nanoscale mineral particles -- nanoparticles -- are naturally formed and removed from the environment by numerous chemical and biological processes. The Center's mission is to uncover the numerous roles played by nanoparticles in geochemical and biogeochemical processes.
The Berkeley Nanosciences and Nanoengineering Institute (BNNI) is the umbrella organization for expanding and coordinating Berkeley research and educational activities in nanoscale science and engineering.
BINAS combines the activities of the University of Bielefeld in nanosciences and biophysics.
The Materials Science and Nanotechnology graduate program has started accepting applications. Students from departments of materials science, physics, electronics, chemistry, mechanical engineering, biotechnology, genetics, pharmacy, mechatronics, agriculture and textile can apply.
Nanotechnology Research Center at Bilkent University is dedicated to research on theoretical and experimental nanoscience and nanotechnology with strong emphasis on education and training.
The mission of the group is to provide a rewarding and nourishing atmosphere of hands-on cutting edge research for students to develop and grow professionally and technically and use as an opportunity to springboard to a professional career that will benefit them and society.
The central theme of the group's research is the exploration of quantum mechanical effects in engineered nanoscale structures and devices with a goal to study fundamental physical phenomena.
Research focuses on mechanical and electronic systems at the nanometer length scale. The group has state-of-the-art facilities where nanodevices can be fabricated and characterized.
The Nanoscale Energy-Fluids Transport (NEFT) laboratory experimentally studies energy and fluids transport at the nanoscale. Current investigations include: Exploring anomalous transport phenomenon in 1-D or 2-D confined nanochannels; Enhancing ion/molecule transport in batteries and fuel cells using nanostructured materials; Improving phase-change heat transfer based on patterned micro/nanostructures; Developing new nanofluidic devices for biomolecule sensing and separation.
The Center serves as a hub for nanoscience researchers from the Charles River and Medical Campuses and build activities that develop interdisciplinary research and training.
Research in Optical Characterization and Nanophotonics (OCN) laboratory focuses on developing and applying advanced optical characterization techniques to the study of solid-state and biological phenomena at the nanoscale.