Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 51 - 75 of 88 for university labs starting with S:

 
Participation in the Nanotechnology Graduate Program leads to Masters of Science, Masters of Engineering, and Doctor of Philosophy in the respective disciplines with a designated nanotechnology concentration. To qualify for the nanotechnology concentration, in addition to satisfying disciplinary core requirements, candidates for Masters' degrees must complete the common core and a minimum of three elective courses and should attend regularly the seminar series in the Nanotechnology Curriculum.
Participation in the Nanotechnology Graduate Program leads to Masters of Science, Masters of Engineering, and Doctor of Philosophy in the respective disciplines with a designated nanotechnology concentration. To qualify for the nanotechnology concentration, in addition to satisfying disciplinary core requirements, candidates for Masters' degrees must complete the common core and a minimum of three elective courses and should attend regularly the seminar series in the Nanotechnology Curriculum.
The lab deals with Large-Area 3-D Nano-Patterning and Nanostructure Fabrication, Nanoscale Interfacial Phenomena, Multifunctional Superhydrophobic Surfaces, Microfluidic Self-Assembly of Nanomaterials, Nanofluidic Energy Harvesting, and Optofluidic Waveguides and Sensors.
The group is exploring nanoelectroics and nanomechatronics research areas based on low dimensional materials, including carbon nanotube, graphene and conjugated polymers.
The group is interested in studying the behavior of advanced material systems at the nanoscale. Particular material systems of interest include polymers and polymer nanocomposites, as well as thin film and piezoelectric materials of interest in MEMS applications.
The goal of the Nanotechnology Graduate Program is to create a vibrant interdisciplinary environment that provides stimulating and cross-fertilizing educational training in nanotechnology to contribute to the Institute's research excellence in related frontiers while preserving strong disciplinary fundamentals.
A new institute supported by Samsung Advanced Institute of Technology
The goals of CINAP are to perform outstanding research in the fields of fundamental and applied physics of low-dimensional structures and to produce young scientists committed to nanophysics and nanoscience.
The Nanoscale Engineering program offers an academically rigorous preparation for students intending to pursue scientific, technical, or professional careers in nanotechnology-enabled fields or graduate studies in nanoscale engineering or nanoscale science, as well as other physical sciences or interdisciplinary sciences such as materials science, physics, biophysics, chemistry or biochemistry.
The bachelor's degree in nanoscale science offers an academically rigorous preparation for students intending to pursue scientific, technical, or professional careers in nanotechnology-enabled fields or graduate studies in nanoscale engineering or nanoscale science, as well as other physical sciences or interdisciplinary sciences such as materials science, physics, biophysics, chemistry or biochemistry.
The Nanoscale Engineering program offers an academically rigorous preparation for students intending to pursue scientific, technical, or professional careers in nanotechnology-enabled fields or graduate studies in nanoscale engineering or nanoscale science, as well as other physical sciences or interdisciplinary sciences such as materials science, physics, biophysics, chemistry or biochemistry.
The MS in Nanobioscience program trains students in the principles, practices, and research paradigms of nanobioscience to prepare them for interdisciplinary careers in research, development, deployment and education at the convergence of medicine and life science with nanoscale science and engineering.
The Nanoscale Engineering program offers an academically rigorous preparation for students intending to pursue scientific, technical, or professional careers in nanotechnology-enabled fields or graduate studies in nanoscale engineering or nanoscale science, as well as other physical sciences or interdisciplinary sciences such as materials science, physics, biophysics, chemistry or biochemistry.
B.Sc. Physics with Nanotechnology Degree Scheme.
The Centre for NanoHealth (CNH) will be located within a Clinical and Biomedical research environment on Swansea?s Singleton hospital site, giving access to patients and creating a pioneering, integrated facility in which novel devices and sensors can be designed, manufactured, functionalised, tested and evaluated.
This is a one-year course, normally a first- or second-class honours degree, dependent on the area of research, offered at the univrsity's The Multidisciplinary Nanotechnology Centre.
The MRes course consists of a 4-month period of intensively taught modules from October to the end of January, followed by an 8-month period of individual research. There are two streams to the MRes course and students may choose to specialise in either structures or fluids. The MSc course consists of an initial 6- month period of taught modules. This provides a good grounding in computer modelling and in the finite element method, in particular. Following the taught component, students undertake a 6-month period of project work.
The university's Systems and Process Engineering Centre brings together academic expertise from across the University, incorporating state-of-the-art facilities. With their reputation for research in Nanotechnology, Swansea University provides an excellent base for your research as a MSc by Research student in Nanotechnology.
The 1-year, full-time MSc in Nanomedicine involves studying for 120 credits of taught modules.
This course provides students with the knowledge, motivation, and self-learning skills required for continuous professional development during their future careers and provides valuable experience of working on complex projects both as individuals and as team members. The full-time scheme lasts for 12 months and consists of two taught semesters (Part I), followed by a three-month period of individual research (Part II) during the summer.
Research within the Multidisciplinary Nanotechnology Centre is carried out in a variety of fields such as nanobiotechnology, nanomedicine, nanoparticles on surfaces or nanoscale modelling.
The Centre for Micro-Photonics is an internationally leading Centre in biophotonics and nanophotonics.
Each age in human civilisation history is defined by a signature material. Developments in nanomaterials over the past 30 years has helped miniaturise and improve electronics, medicine, communications, manufacturing, and almost every aspect of our life. At the Centre for Translational Atomaterials they are searching for the next signature materials for the coming age.
As the materials research institute in the ETH-domain, Empa is most certainly active in nanotechnology and is generating new knowledge, new materials and new applications and is transferring this knowhow to potential users.
FIRST is a technology and cleanroom facility for advanced Micro- and Nanotechnology