Posted: August 24, 2009

Metamaterialien lassen Licht tanzen

(Nanowerk News) In letzter Zeit haben Metamaterialien, mit denen sich elektromagnetische Wellen, also auch Licht, manipulieren lassen, die Phantasie von Forschern beflügelt. Diese künstlichen Strukturen besitzen Eigenschaften, wie man sie in der Natur nicht findet. Perfekte Linsen ohne Abbildungsfehler, ja sogar optische Tarnmäntel à la Harry Potter sind damit zumindest theoretisch möglich. Wissenschaftler am Karlsruher Institut für Technologie (KIT) beschreiben jetzt erstmals dreidimensionale Metamaterialien, die tatsächlich in spektroskopischen Messgeräten Anwendung finden könnten.
In der Arbeit, die die angesehene Fachzeitschrift Science bereits vor dem Abdruck als "Highlight" auf ihrer Website veröffentlicht hat, kombiniert das Team um Professor Martin Wegener vom Centrum für Funktionelle Nanostrukturen und Professor Volker Saile vom Institut für Mikrostrukturtechnik unterschiedliche Technologien ("Gold Helix Photonic Metamaterial as Broadband Circular Polarizer").
Bild des Metamaterials unterm Rasterelektronenmikroskop, kombiniert mit einer Computergrafik
Bild des Metamaterials unterm Rasterelektronenmikroskop, kombiniert mit einer Computergrafik. Die rot-weisse Spirale symbolisiert das zirkular polarisierte Licht. (Grafik: CFN)
Für die Herstellung der neuartigen Elemente wird zunächst mit einem Laser in einem Fotolack die Struktur gleichsam "geschrieben" und danach aufgelöst. In einem zweiten Schritt wird in den dabei entstandenen Hohlräumen Gold galvanisch abgeschieden, bis sie gefüllt sind. Schliesslich wird die Polymer-Urform weggeätzt. Zurück bleibt eine Struktur, die an eine Federkernmatratze erinnert: Sie besteht aus vielen regelmässig angeordneten, winzigen Goldspiralen mit einem Durchmesser von nur wenigen hundert Nanometern (1 Nanometer = 1 Millionstel Millimeter). "Die Spiralen bringen Licht, das durch das Metamaterial strahlt, gleichsam das geordnete Walzertanzen bei", umschreibt Wegener die Funktionsweise. Aufgrund ihres Aufbaus lassen die dreidimensionalen Metamaterialien nur einen der beiden Drehsinne einer elektromagnetischen Welle passieren. Sie wirken so als Filter für zirkular polarisiertes Licht.
Diese Eigenschaft beruht darauf, dass Metamaterialien nicht nur die elektrische, sondern auch die magnetische Komponente einer elektromagnetischen Welle direkt beeinflussen. "Solche Strukturen kön-nen dies je nach Grösse der Spiralen für ganz unterschiedliche Wellenlängen und über eine vergleichsweise grosse Bandbreite von Wellenlängen", erläutert Justyna Gansel aus der Arbeitsgruppe Wegener. Ihre Ergebnisse räumen den bisher beobachteten Nachteil von Metamaterialien aus, dass ihre speziellen Eigenschaften nur auf ein enges Frequenzspektrum beschränkt sind.
Die neuartigen kompakten und breitbandigen zirkularen Polarisatoren könnten für zahlreiche Anwendungen in der optischen Spektroskopie von grossem Interesse sein. Sie liessen sich zum Beispiel in handliche Geräte einbauen, die Gemische von Substanzen analysieren, welche selbst als Polarisatoren wirken. "Die rechtsdrehenden Milchsäuren aus dem Joghurt könnten so in Zukunft mit Hilfe von Metamaterialien bestimmt werden", spekuliert Gansel.
Mit ihren Arbeiten an nanostrukturierten polarisierenden Metamaterialien setzen die KIT-Wissenschaftler quasi eine alte Karlsruher Tradition fort: Vor gut 120 Jahren benutze Heinrich Hertz einen, allerdings fast zwei Meter grossen, linearen Polarisator für seine bahnbrechenden Forschungen über elektromagnetische Wellen.
Hintergrundinformation
Metamaterialien
Metamaterialien sind künstlich hergestellte Strukturen, die sich wie ein einheitliches Material verhalten und Eigenschaften besitzen, die in der Natur nicht vorkommen. Sie sind aus gleichartigen, regelmässig angeordneten Elementen aufgebaut, die, obwohl deutlich grösser als Atome in einem Kristall, wie diese mit elektromagnetischen Wellen wechselwirken. Mit nanotechnologischen Methoden produzierte Metamaterialien bestehen aus so kleinen Einheiten, dass sie elekt-romagnetische Wellen mit Wellenlängen vom Sichtbaren bis hin zum Infrarot-Licht beeinflussen können.
Polarisation
Als elektromagnetische Welle besteht Licht aus einer magnetischen und einer elektrischen Wellenkomponente, deren Schwingungsebenen senkrecht zueinander stehen. Wenn diese Wellen auf Objekte wie Glas oder feinste Partikel in der Luft (Dunst) treffen, wird das Licht reflektiert, wobei sich die Ausrichtung der Schwingungsebene ändern kann. Polarisationsfilter, wie man sie aus der Fotografie kennt, oder spezielle Sonnenbrillen filtern Wellen mit dieser verän-derten Schwingungsebene heraus und lassen nur noch Lichtwellen passieren, die hierzu senkrecht schwingen. Das austretende Licht ist dann linear polarisiert. Unerwünschte Reflektionen in Glasscheiben oder diffuses Streulicht "verschwinden" so für den Betrachter. Während bei linear polarisiertem Licht die elektrische Komponente in einer Richtung hin- und herschwingt, dreht sich bei zirkular polarisiertem Licht deren Richtung während einer Schwingung um 360 Grad. Die elektrische Komponente beschreibt bei ihrer Ausbreitung im Raum quasi eine Spirale.
Im Karlsruher Institut für Technologie (KIT) schliessen sich das Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft und die Universität Karlsruhe zusammen. Damit wird eine Einrichtung international herausragender Forschung und Lehre in den Natur- und Ingenieurwissenschaften aufgebaut. Im KIT arbeiten insgesamt 8000 Beschäftigte mit einem jährlichen Budget von 700 Millionen Euro. Das KIT baut auf das Wissensdreieck Forschung - Lehre - Innovation.
Die Karlsruher Einrichtung ist ein führendes europäisches Energieforschungszentrum und spielt in den Nanowissenschaften eine weltweit sichtbare Rolle. KIT setzt neue Massstäbe in der Lehre und Nachwuchsförderung und zieht Spitzenwissenschaftler aus aller Welt an. Zudem ist das KIT ein führender Innovationspartner für die Wirtschaft.
Source: Karlsruher Institut für Technologie