Significant improvement in weld mechanical properties using nanoparticles

(Nanowerk News) Weld mechanical properties of cellulose welding electrodes were improved significantly by adding titanium dioxide nanoparticles to the coating of the electrode ("Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals").
The researchers also obtained homogenous distribution of potential spots for the growth of needle-type ferrite in the weld metal.
In this research, titanium dioxide nanoparticles were used in the coating of AWS E6010 welding electrode, which is a cellulose electrode. Titanium dioxide nanoparticles entered the welding bath during the welding by using the electrode, and they created homogenous distribution of high potential centers for the growth of needle-type ferrite in the weld metal. As the concentration of needle-type ferrite increased, weld mechanical properties caused by the electrode showed significant improvement in comparison with the similar cellulose electrode without using nanoparticles.
In this research, the addition of very tiny amount of titanium dioxide nanoparticles to the coating of AWS E6010 cellulose electrode increased its mechanical properties, especially its toughness, up to two times. Since the mechanical properties of welding coated electrodes modified with nanotechnology are much higher than those of welding electrodes without using nanotechnology, the problems created in the weld during the welding process in these electrodes are much less in comparison with the electrodes without using nanoparticles.
According to Fattahi, one of the researchers, the research was carried out in association with Petroleum Industry University and Ama Electrode Fabrication Company. The coated welding electrodes have been produced in the factory at semi-industrial scale, and there are no limitations for their commercialization or mass production. The product has been registered in Iran Industrial Properties Organization under registration number 69218.
Source: INIC