Reference terms from Wikipedia, the free encyclopedia
 

Petrified wood

Petrified wood (from the Latin root petro meaning 'rock' or 'stone'; literally 'wood turned into stone') is the name given to a special type of fossilized remains of terrestrial vegetation. Petrifaction is the result of a tree or tree-like plants having been replaced by stone via a mineralization process that often includes permineralization and replacement. The organic materials making up cell walls have been replicated with minerals (mostly silica in the form of opal, chalcedony, or quartz). In some instances, the original structure of the stem tissue may be partially retained. Unlike other plant fossils, which are typically impressions or compressions, petrified wood is a three-dimensional representation of the original organic material.

The petrifaction process occurs underground, when wood becomes buried in water-saturated sediment or volcanic ash. The presence of water reduces the availability of oxygen which inhibits aerobic decomposition by bacteria and fungi. Mineral-laden water flowing through the sediments may lead to permineralization, which occurs when minerals precipitate out of solution filling the interiors of cells and other empty spaces. During replacement, the plant's cell walls act as a template for mineralization. There needs to be a balance between the decay of cellulose and lignin and mineral templating for cellular detail to be preserved with fidelity. Most of the organic matter often decomposes, however some of the lignin may remain. Silica in the form of opal-A, can encrust and permeate wood relatively quickly in hot spring environments. However, petrified wood is most commonly associated with trees that were buried in fine grained sediments of deltas and floodplains or volcanic lahars and ash beds. A forest where such material has petrified becomes known as a petrified forest.

 
Note:   The above text is excerpted from the Wikipedia article Petrified wood, which has been released under the GNU Free Documentation License.
 

Check out these latest Nanowerk News:

 

Nature-inspired geometric designs for economical self-assembling materials

Geometric motifs from nature shape new efficient self-assembling spongy materials with precise structural control.

Smart learning algorithm achieves first high-res 3D chemical imaging at one-nanometer scale

By leveraging knowledge of the imaging process and taking a new approach to tomographic reconstruction, researchers are now able to simultaneously image structure and chemical composition with high resolution in 3D.

Tracking the dynamics of biomolecules with optofluidic antennas

Physicists have improved a photonic structure known from quantum optics - the planar optical antenna - for use in aqueous media to monitor dynamic processes. This enables conformational changes of individual biomolecules to be observed with the highest temporal resolution.

Lead-vacancy centers in diamond as building blocks for large-scale quantum networks

Researchers have developed a lead-vacancy center in diamond. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies.

Microdroplets harness laser light to detect disease markers

Researchers created tiny droplets that, when activated by laser light, can detect viral protein biomarkers indicating the presence of certain diseases.

Atomic nucleus excited with laser: a breakthrough after decades

The 'thorium transition', which has been sought after for decades, has now been excited for the first time with lasers. This paves the way for revolutionary high precision technologies, including nuclear clocks.

Physicists show that light can generate electricity even in translucent materials

Some materials are transparent to light of a certain frequency. When such light is shone on them, electrical currents can still be generated, contrary to previous assumptions.

Bacteria 'nanowires' could help develop green electronics

Engineered protein filaments originally produced by bacteria have been modified by scientists to conduct electricity.

Switching a 2D metal-organic framework from an insulator to a metal

Scientists have found unusual insulating behaviour in a new atomically-thin material - and the ability to switch it on and off.

From disorder to order: flocking birds and 'spinning' particles

Research demonstrates a new mechanism of order formation in quantum systems, with potential applications for quantum technology.