Open menu
Nanowerk

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

New anode material set to boost lithium-ion battery capacity

(Nanowerk News) A new approach developed by a team of researchers, led by Prof. Jaephil Cho (School of Energy and Chemical Engineering) could hold the key to greatly improving the performance of commercial lithium-ion batteries.
Prof. Cho and his research team have developed a new type anode material that would be used in place of a conventional graphite anode, which they claim will lead to lighter and longer-lasting batteries for everything from personal devices to electric vehicles.
Cross-sectional schematic view showing the detailed structural characteristics of a SGC hybrid particle
Cross-sectional schematic view showing the detailed structural characteristics of a SGC hybrid particle. (click on image to enlarge)
In the study, the research team has demonstrated the feasibility of a next-generation hybrid anode using silicon-nanolayer-embedded graphite/carbon. They report that this architecture allows compatibility between silicon and natural graphite and addresses the issues of severe side reactions caused by structural failure of crumbled graphite dust and uncombined residue of silicon particles by conventional mechanical milling.
This newly-developed anode material has been manifactured with increase in graphite content in composite by 45%. The research team has also developed new equipment, which is capable of producing 300kg in 6 hours per batch using a small amount of silane gas (SiH4). Such simple procedure is highly esteemed, as it ensures competitive price.
They report that the silicon/graphite composite is mass-producible and it has superior battery performances with industrial electrode density, high areal capacity, and low amounts of binder. The findings of the research have been published in Nature Energy ("Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries").
Source: By Joo Hyeon Heo, Ulsan National Institute of Science and Technology (UNIST)
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
These articles might interest you as well: