Surf and earth: how prawn nanocomposite shopping bags could save the planet

(Nanowerk News) Bioengineers at The University of Nottingham are trialling how to use shrimp shells to make biodegradable shopping bags, as a ‘green’ alternative to oil-based plastic, and as a new food packaging material to extend product shelf life.
The new material for these affordable ‘eco-friendly’ bags is being optimised for Egyptian conditions, as effective waste management is one of the country’s biggest challenges.
An expert in testing the properties of materials, Dr Nicola Everitt from the Faculty of Engineering at Nottingham, is leading the research together with academics at Nile University in Egypt.
“Non-degradable plastic packaging is causing environmental and public health problems in Egypt, including contamination of water supplies which particularly affects living conditions of the poor,” explains Dr Everitt.
Natural biopolymer products made from plant materials are a ‘green’ alternative growing in popularity, but with competition for land with food crops, it is not a viable solution in Egypt.

Turning the problem into the solution

This new project aims to turn shrimp shells, which are a part of the country’s waste problem into part of the solution.
Dr Everitt said: “Use of a degradable biopolymer made of prawn shells for carrier bags would lead to lower carbon emissions and reduce food and packaging waste accumulating in the streets or at illegal dump sites. It could also make exports more acceptable to a foreign market within a 10-15-year time frame. All priorities at a national level in Egypt.”

Degradable nanocomposite material


The research is being undertaken to produce an innovative biopolymer nanocomposite material which is degradable, affordable and suitable for shopping bags and food packaging.

Chitosan is a man-made polymer derived from the organic compound chitin, which is extracted from shrimp shells, first using acid (to remove the calcium carbonate “backbone” of the crustacean shell) and then alkali (to produce the long molecular chains which make up the biopolymer).

The dried chitosan flakes can then be dissolved into solution and polymer film made by conventional processing techniques.
Chitosan was chosen because it is a promising biodegradable polymer already used in pharmaceutical packaging due to its antimicrobial, antibacterial and biocompatible properties. The second strand of the project is to develop an active polymer film that absorbs oxygen.

Enhancing food shelf life and cutting food waste

This future generation food packaging could have the ability to enhance food shelf life with high efficiency and low energy consumption, making a positive impact on food wastage in many countries.
If successful, Dr Everitt plans to approach UK packaging manufacturers with the product.
Additionally, the research aims to identify a production route by which these degradable biopolymer materials for shopping bags and food packaging could be manufactured.
Source: The University of Nottingham