Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Self-cleaning membranes for sustainable desalination

(Nanowerk News) An advanced water treatment membrane made of electrically conductive nanofibers developed at Masdar Institute was highlighted by Dr. Raed Hashaikeh, Professor of Mechanical and Materials Engineering at Masdar Institute, in his keynote speech during the 3rd International Conference on Desalination using Membrane Technology held last week in Spain.
Self-cleaning membranes offer a critically needed solution to the problem of fouling, which is the unwanted build-up of organic and inorganic deposits on a membrane’s surface that reduces the membrane’s ability to filter impurities. Water treatment and purification membranes that can easily clean themselves when fouled could make pressure-driven membrane filtration systems used to treat and desalinate water more energy-efficient.
“Keeping membranes clean, permeable and functional is a great challenge to membrane desalination technologies. When a membrane becomes fouled, its pores get blocked and its flux is severely reduced, which means that much less water can pass through the membrane at a constant pressure,” Dr. Hashaikeh explained.
Self-cleaning membranes for desalination
Self-cleaning membranes for desalination.
Conventional methods for cleaning fouled membranes involve expensive and harsh chemical treatments, and often lead to water treatment plant shut-downs, which can cost millions of dollars in lost operational hours. In the UAE, annual spending on desalination is already estimated to cost AED12 billion, indicating a pressing need for solutions that avoid costly shut-downs and treatments.
In addition to posing a heavy financial burden, fouled membranes are also a sustainability issue, as once a membrane becomes fouled, the higher pressure needed to push water through clogged pores significantly increases the plant’s energy consumption. The harsh chemicals used to clean a fouled membrane are also bad for the environment and require neutralizing. Thus, finding a way to easily and quickly clean fouled membranes not only makes financial sense, but environmental sense.
In a country like the UAE, where natural gas-powered thermal desalination produces over 80% of the country’s domestic water, innovative technologies like self-cleaning membranes to support a shift toward lower-energy and lower-cost membrane-based desalination are essential for achieving economic and environmental balance while meeting the UAE’s water demands.
And now, Dr. Hashaikeh’s research group may have brought the UAE closer towards realizing a more sustainable and economic approach to membrane desalination through their research on the application of advanced nanofibers for enhanced, self-cleaning membranes.
The group has leveraged the electrically conductive nature of a special kind of nanofiber, called carbon nanotubes (CNT). CNTs are tiny cylindrical tubes made of tightly bonded carbon atoms, measuring just one atom thick. But the CNTs Dr. Hashaikeh’s team used, which were provided by global security, aerospace, and information technology company Lockheed Martin, are not ordinary CNTs.
“The carbon nanostructures supplied by Lockheed Martin are special; they are networked. This means that they are composed of many interconnecting channels that branch off in all directions. This interconnectivity is what enables the entire membrane to become completely cleaned when electricity is applied to it,” Dr. Hashaikeh said.
The networked CNTs, also known as carbon nanostructures (CNS), coupled with the team’s expert membrane fabrication know-how, resulted in the development of two different types of membranes that can clean themselves when a low-voltage electric current is run through them.
The first type is a microfiltration membrane, which has pores sizes ranging from 100 nanometers to 10 micrometers, where a nanometer is approximately one hundred thousand times smaller than the width of a human hair and a micrometer one thousand times larger than a nanometer. The second is a nanofiltration membrane with pore sizes ranging from one to ten nanometers. Both membranes demonstrated the ability to clean themselves in response to an electric shock, which resulted in the immediate restoration of the membranes’ flux.
Dr. Hashaikeh’s investigation of a self-cleaning membrane began four years ago, when he realized that electrolytic cleaning – which is the process of removing soil, scale or corrosion from a metal’s surface by subjecting it to an electric current – could also be used to clean membranes. To prove his theory, he coated a membrane with ordinary CNTs. When a voltage was applied to the membrane, the parts of the membranes that were coated with CNTs were successfully cleaned. Dr. Hashaikeh filed a patent for this in-situ electrolytic cleaning process with the United States Patent and Trademark Office (USPTO) in 2014.
However, there were limitations to this discovery, namely that only specific areas in the coated CNTs were cleaned, not the entire membrane. Thus, to develop an efficient, self-cleaning membrane with commercial potential, Dr. Hashaikeh required a material that would easily allow electric shockwaves to penetrate through the entire membrane’s surface area.
The unique, interconnected structure of Lockheed Martin’s carbon nanostructures proved to be just the right type of electrically conductive, nano-fibrous material required.
“We immediately recognized that Lockheed Martin’s CNTs might enable electricity to pass through the entire surface, but we had to modify the nanostructures to transform the material into a membrane. To do this, we controlled certain properties, such as wettability and pore size, and improved its mechanical strength by incorporating polymer materials,” he explained.
Dr. Haishaikeh’s team successfully developed a self-cleaning microfiltration membrane in 2014 and a paper describing the research was published in the Journal of Membrane Science ("A novel in situ membrane cleaning method using periodic electrolysis"). But they did not stop there; they wanted to take their research a step further and find a way to develop a self-cleaning nanofiltration membrane. While microfiltration membranes are useful for removing larger particles, including sand, silt, clays, algae and some forms of bacteria, nanofiltration membranes can go a step further, removing most organic molecules, nearly all viruses, most of the natural organic matter and a range of salts. Nanofiltration membranes also remove divalent ions, which make water hard, making nanofiltration a popular and eco-friendly option to soften hard water.
To create self-cleaning nanofiltration membranes out of Lockheed Martin’s networked CNTs, the team needed to overcome the problem of the CNTs’ large pore sizes, which prevented the material from functioning as a nanofiltration membrane.
To achieve this they looked to a second advanced nanofiber material previously developed by Dr. Hashaikeh’s research group, known as networked cellulose. Networked cellulose is a modified type of cellulose made from wood pulp. When dried, the networked cellulose gel shrinks in volume, but maintains its integrity and shape, becoming harder as it shrinks. The research team asserted that the networked cellulose gel could reduce the membrane’s pore sizes while maintaining its structural integrity.
The researchers then mixed the carbon nanostructures with the networked cellulose gel and as the mixture dried, the networked cellulose shrank. The shrinking of the network cellulose in turn pressurized the nanostructures in the membrane. The resulting membrane is strong with much smaller pore sizes. Dr. Hashaikeh reports that the pore size dropped from 60 nanometers to just three nanometers with the addition of the networked cellulose in a paper describing the study, which was published in the journal Desalination last month ("Electrically conducting nanofiltration membranes based on networked cellulose and carbon nanostructures"). Co-authors from Masdar Institute include PhD student Farah Ahmad and postdoctoral researcher Boor Lalia, along with Dr. Nidal Hilal of Swansea University.
Source: By Erica Solomon, Masdar Institute
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
These articles might interest you as well: