Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: May 7, 2007

Historian reconsiders nanotechnology's history

(Nanowerk News) UC Santa Barbara professor of history W. Patrick McCray takes a close look at the evolution of nanotechnology in the May issue of Nature Nanotechnology (" MBE deserves a place in the history books"). McCray, a member of UCSB’s Center for Nanotechnology in Society, argues that the role of the Molecular Beam Epitaxy (MBE) tool has played far more of a central role in the development and growth of nanoscience than history has given credit.
McCray points out that the lessons learned from MBE’s history can benefit policy makers who are considering nanotechnology’s risks and benefits. “When government investment in nanotechnology took off in the US and elsewhere around the turn of the century, new materials and devices for electronics featured prominently,” McCray notes. “In recent years, however, attention has shifted to health and safety concerns, and worries about the social and economic impacts of nanotechnology. Efforts to anticipate the concerns of tomorrow would benefit from a better understanding of the past, including these hidden histories of nanotechnology.”
Although the history of nanotechnology is widely regarded as originating with Richard Feynman’s 1959 talk, fancifully titled “There’s Plenty of Room at the Bottom,” McCray reminds us that the influence of Feynman’s lecture has been overstated. Moreover, while attention is often given to the development of scanning and atomic forces microscopes in the 1980s, nanofabrication techniques such as MBE predate them.
MBE allows scientists to create nanostructures for research and commercial applications. Its origins go back more than four decades to the needs of solid-state physicists and semiconductor makers to fabricate new materials and devices. Especially important, McCray notes, were contributions by scientists at Bell Labs and IBM in the 1970s. Initially, the MBE community was small and early practitioners built their complex and expensive machines by hand. By the 1980s, commercial firms were producing MBE devices which helped this nascent nanotech community to expand. Today, MBE is a fully refined research tool for nanoscience. Outside of the lab, MBE creates semiconductor structures for lasers used in hundreds of millions of CD and DVD players.
“MBE success as a research tool and as a commercial process that provides the basis for billions of dollars of commerce seems to be partly responsible for its relative invisibility in the history of nanotechnology,” McCray writes in Nature Nanotechnology. “MBE originated decades ago at prestigious corporate laboratories that explored the basic science behind the microelectronic devices upon which their business rested. Over time, it matured to become a common yet flexible tool that was essential for research in many areas of nanoscience and technology.”
McCray, who was originally trained as a materials scientist, now examines the history of contemporary science and technology of the sciences. McCray received his PhD from the University of Arizona in 1996.
Source: Center for Nanotechnology in Society
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
 
 
These articles might interest you as well: