Open menu

CleanTech News

The latest news about environmental and green
technologies – renewables, energy savings, fuel cells

Posted: Dec 03, 2012

New lab to develop technologies to produce high value chemicals from biomass

(Nanowerk News) The Institute of Chemical and Engineering Sciences (ICES), a research institute of The Agency for Science, Technology and Research (A*STAR), officially opened its Metabolic Engineering Research Laboratory (MERL) in Biopolis today. The new laboratory will design and engineer microbial cellular factories (Escherichia coli and yeast based) capable of cost-effectively producing high value chemicals from agricultural waste. By creating new technologies and know-how, the laboratory will develop new strategies and applications for efficient biomass utilisation. It will also focus on developing new computational and experimental approaches for synthetic biology and metabolic engineering applications to accelerate the engineering of the cellular factories.
The development of a bio-economy based on renewable plant biomass has emerged as a key priority for many countries; by 2015, the global biorenewable chemicals market is estimated at US $6.8 billion[1]. The fast growing biorenewable chemicals industry not only represents a shift as the traditional petrochemical industry re-invents itself in the light of a carbon-constrained future, but it offers a valuable economic opportunity for Singapore to renew its chemical industry and maintain its advantage as a leading chemical hub in the region.
The MERL laboratory will work for the benefit of a sustainable chemicals industry, which is looking for green alternatives to traditional petrochemical routes. The technology developments from MERL will provide sustainable routes for the production of chemicals such as acrylic acid, butadiene, and adipic acid from biorenewable sources. The systems biology and metabolic engineering toolbox that the laboratory develops can serve as an enabling platform for the biofuels, pharmaceutical, and nutraceutical industries.
The derivation of chemicals from biomass is an emerging field requiring expertise in genomics, mechanical processing, metabolic engineering, catalysis and process engineering. This platform aims to foster collaborations amongst the research institutes from A*STAR’s Biomedical Research Council and Science and Engineering Research Council. Through the convergence of capabilities, researchers study technology challenges and develop platform technologies which can be transferred to industry and applied to a wide range of chemical targets. The research brings together biologists, chemists, physicists, and engineers, universities and industry partners to work on common goals, organised to create solutions for applications in medical, chemical, food, and agricultural industries.
“We will collaborate with the scientific community and industry to address technological capabilities essential to form the foundation for bioprocess development activities. The 10-member research team will develop applications using novel and sustainable biological processes as an alternative route to conventional chemical processes,” said Professor Zhao Huimin, the key scientist for MERL biomass programme.
“Most of the world’s current chemicals and chemical-based products are derived from crude oil. Eco-friendly processes for the next generation of chemicals, materials are urgently required. The possibility of creating an entirely new value chain, deriving materials and chemical products from biomass and through the integration of biological and chemical sciences, with novel techniques and know-how is definitely an exciting prospect,” said Dr Keith Carpenter, ICES’s Executive Director.
Source: A*STAR
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
Check out these other trending stories on Nanowerk:

Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.