Open menu

CleanTech News

The latest news about environmental and green
technologies – renewables, energy savings, fuel cells

Posted: Jun 18, 2015

Mould unlocks new route to biofuels

(Nanowerk News) Based at the Manchester Institute of Biotechnology (MIB), researchers have identified the exact mechanism and structure of two key enzymes isolated from yeast moulds that together provide a new, cleaner route to the production of hydrocarbons.
Structure of enzymes in yeast
Structure of enzymes in yeast
Published in Nature, the research offers the possibility of replacing the need for oil in current industrial processes with a greener and more sustainable natural process.

Lead investigator Professor David Leys, explains the importance of his work: “One of the main challenges our society faces is the dwindling level of oil reserves that we not only depend upon for transport fuels, but also plastics, lubricants, and a wide range of petrochemicals. Solutions that seek to reduce our dependency on fossil oil are urgently needed.”

He adds: “Whilst the direct production of fuel compounds by living organisms is an attractive process, it is currently not one that is well understood, and although the potential for large-scale biological hydrocarbon production exists, in its current form it would not support industrial application, let alone provide a valid alternative to fossil fuels.”

Professor Leys and his team investigated in detail the mechanism whereby common yeast mould can produce kerosene-like odours when grown on food containing the preservative sorbic acid. They found that these organisms use a previously unknown modified form of vitamin B2 (flavin) to support the production of volatile hydrocarbons that caused the kerosene smell. Their findings also revealed the same process is used to support synthesis of vitamin Q10 (ubiquinone).
Using the Diamond synchrotron source at Harwell, they were able to provide atomic level insights into this bio catalytic process, and reveal it shares similarities with procedures commonly used in chemical synthesis but previously thought not to occur in nature.
Professor David Leys says: “Now that we understand how yeast and other microbes can produce very modest amounts of fuel-like compounds through this modified vitamin B2-dependent process, we are in a much better position to try to improve the yield and nature of the compounds produced.”
In this particular study, published in the journal Nature, researchers focussed on the production of alpha-olefins; a high value, industrially crucial intermediate class of hydrocarbons that are key chemical intermediates in a variety of applications, such as flexible and rigid packaging and pipes, synthetic lubricants used in heavy duty motor and gear oils, surfactants, detergents and lubricant additives.
Professor Leys concludes: “This fundamental research builds on the MIB’s expertise in enzyme systems and provides the basis for the development of new applications in biofuel and commodity chemical production. The insights from this research offer the possibility of circumventing current industrial processes which are reliant on scarce natural resources.”
This study resulted in back-to-back publications in the journal Nature:
White, M. D. et al. “UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis”. This manuscript explains how the vitamin B2 is modified and thereby recruited in bacterial vitamin Q biosynthesis.
Payne, K.A.P. et al. “New cofactor supports alfa-beta-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition”. This manuscript establishes how the modified B2 is used to support the fuel-like compound production.
Source: University of Manchester
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
These articles might interest you as well: