Open menu

Nanotechnology General News

The latest news from academia, regulators
research labs and other things of interest

Posted: Jun 21, 2012

Graphen-Forschung: Lichtwellen im Kohlenstoff-Netz fangen

(Nanowerk News) Dünn, dünner, Graphen: Bei diesem Material ordnen sich Kohlenstoff-Atome zu sechseckigen Maschen in einem nur zweidimensionalen Gitter an. Das wohl dünnste Netz der Welt ist aber sehr stabil und kann sogar Strom leiten. Andre Geim und Konstantin Novoselov erhielten für diese Entdeckung den Nobelpreis für Physik im Jahr 2010.Graphen könnte das Silizium als Basis für ausserordentlich kleine und schnelle Transistoren ablösen und wird deshalb intensiv erforscht.
Stromleitend ist Graphen, weil Elektronen in seinem Netz gefangen sind und sich dabei mit grosser Freiheit bewegen. Ein internationales Team um den US-amerikanischen Forscher Dimitri Basov hat nun aber gezeigt, dass sich überraschenderweise auch Photonen vom Graphennetz einfangen lassen und auf ihm bewegen (siehe Nature: "Gate-tuning of graphene plasmons revealed by infrared nano-imaging").
"Die Lichtwellen können dort sogar gesteuert werden", sagt der Physiker Dr. Fritz Keilmann, der der LMU, dem Center for Nanoscience (CeNS) sowie dem Max Planck Institut für Quantenoptik (MPQ) angehört, und massgeblich zu dieser Arbeit beigetragen hat.
Computer auch per Licht schalten
Die Steuerung erfolgt direkt über elektrische Felder und Stöme. Demnach könnte künftig in Graphen das Licht durch Strom und möglicherweise auch Strom durch Licht manipuliert werden, und dies auf nanoskopisch kleinen Leitungsbahnen von Millionstel Millimetern und mit extrem kurzen Schaltzeiten von weniger als einer Pikosekunde - also 0,000000000001 Sekunden. "Möglicherweise lassen sich auf dieser Grundlage Computer entwickeln, bei denen Graphen-Transistoren mit Strom wie mit Licht geschaltet werden können", sagt Keilmann.
Schon länger hatten Berechnungen vermuten lassen, dass Photonen entlang von Graphen geleitet werden können. Es sollte sich dabei um Photonen des langwelligen Infrarotlichts handeln, die dabei aber enorm gebremst laufen würden. Dies wäre ihrer Elektronenlast zu verdanken: Photonen und Elektronen sollten zusammen eine Art Mischteilchen bilden. Diese Plasmonen konnten bislang aber nicht untersucht werden, weil der Impuls der anregenden Photonen viel zu niedrig war.
Photonen auf die Spitze getrieben
Den Durchbruch brachte eine nanometrisch feine Metallspitze, an deren Spitze sich das Infrarotlicht - ähnlich wie bei einem Blitzableiter - konzentriert. Die Infrarot-Photonen bekommen so einen Impuls, der bis zu 60-mal erhöht ist. Sie können sich mit diesem "Schub" problemlos in Plasmonen umwandeln und von der Metallspitze weg auf dem Graphen "loslaufen". Die hierfür nötige Apparatur stand bereits in Form eines kommerziellen "Infrarot-Nahfeldmikroskops" zur Verfügung, dessen feine Abtastspitze normalerweise benutzt wird, um Rasterbilder der chemischen Zusammensetzung aufzunehmen.
In diesem Fall wurde nur ein einziges Rasterbild vom Rand der Graphenprobe aufgenommen. Die Reflektion der Plasmonen an diesem Rand erzeugte ein Interferenzmuster, das die Existenz dieser Mischteilchen ableiten und sogar ihre interessanten Eigenschaften ablesen liess. Dazu gehören unter anderem die Stärke der Reflektion am Graphenrand sowie eine für Anwendungen besonders wichtige elektrische Geschwindigkeitsänderung. "Die lang gesuchte elektrische Kontrolle von Licht ist damit Realität geworden", sagt Keilmann.
Eine Arbeitsgruppe in Spanien ist unabhängig zum gleichen Ergebnis gekommen, und zwar für einen aus der Gasphase abgeschiedenen statt dem hier von Graphit abgezogenen Graphenfilm. Ihr Bericht wird in der gleichen Ausgabe des Fachmagazins Nature publiziert werden und so die Befunde sowie deren Bedeutung für die Nanoelektronik bestärken.
Source: Ludwig-Maximilians-Universität München
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!
 
 
These articles might interest you as well: