Less wear, longer life for memory storage device

(Nanowerk News) Probe storage devices read and write data by making nanoscale marks on a surface through physical contact. The technology may one day extend the data density limits of conventional magnetic and optical storage, but current probes have limited lifespans due to mechanical wear.
A research team, led by Intel Corp., has now developed a long-lasting ultrahigh-density probe storage device by coating the tips of the probes with a thin metal film. The team's device features an array of 5,000 ultrasharp probes that is integrated with on-chip electronic circuits. The probes write tiny bits of memory as small as a few nanometers by sending short electrical pulses to a ferroelectric film, a material that can be given a permanent electric polarization by applying an electric field.
High-speed data access requires that the probes slide quickly and frequently across the film. To prevent tip wear, which can seriously degrade the write-read resolution of the device, the researchers deposited a thin metal film of hafnium diboride (HfB2) on the probe tips.
As the researchers describe in the American Institute of Physics' journal Applied Physics Letters ("Hard HfB2 tip-coatings for ultrahigh density probe-based storage"), the metal film reduces wear and enables the probe tips to retain their write-read resolution at high speeds for distances exceeding 8 kilometers – greatly increasing the device's lifetime. The data densities of the device exceed 1 Terabit per square inch.
The work is an important step toward the commercialization of a probe-based storage technology with capacities that exceed those of hard disk and solid-state drives.
Source: American Institute of Physics