Posted: Sep 19, 2017 | |
Novel strategy for chirality controlled synthesis of single-walled carbon nanotubes(Nanowerk News) Researchers at Tohoku University have developed a novel strategy for controlling chirality of single-walled carbon nanotubes (SWNTs). By using this approach, preferential synthesis of (6,4) SWNTs has been realized for the first time (Scientific Reports, "Preferential synthesis of (6,4) single-walled carbon nanotubes by controlling oxidation degree of Co catalyst"). |
|
The unique growth mechanism has been elucidated through comparing experiments and theoretical calculations made with a researcher from the University of Tokyo. | |
![]() |
|
(6,4) This is SWNTs grown by oxidation-degree control of Co catalyst. (Image: Toshiaki Kato) | |
Chirality-selective synthesis of single-walled carbon nanotubes (SWNTs) has been a research goal for the last two decades and is still challenging due to the difficulty in controlling the atomic structure in the one-dimensional material. | |
Led by Associate Professor T. Kato, the team demonstrated predominant synthesis of (6,4) SWNTs by tuning the oxidation degree of the Co catalyst. The detailed mechanism is investigated through a systematic experimental study combined with first-principle calculations, revealing that the independent control of tube diameter and chiral angle achieved by changing the binding energy between SWNTs (cap and tube edge) and catalyst causes a drastic transition of chirality of SWNTs from (6,5) to (6,4). | |
"Since our approach of independently controlling the diameter and chiral angle can be applied to other chirality species, our results can be useful in achieving the on-demand synthesis of specific-chirality SWNTs. This is, which is necessary for the practical use of SWNTs-based future devices such as ultra-high performance transistors, electrical and optical memories, and various sensor applications," says Kato. | |
"High purity synthesis of (6,4) SWNTs can contribute to pushing the study of SWNTs to industrial -- especially optoelectrical -- applications due to the largest band gap and highest quantum yields of (6,4) SWNTs." |
Source: Tohoku University | |
Subscribe to a free copy of one of our daily Nanowerk Newsletter Email Digests with a compilation of all of the day's news. |