Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1 - 25 of 28 for research and community organizations starting with K:

 
The Center develops a rigorous research focus on using sustainable agriculture-based nanomaterials which could lead to breakthrough discoveries in the treatment and diagnosis of animal diseases, improve food safety, as well as interface closely with the infectious disease community supporting NBAF research initiatives.
The Institute of Nanotechnology (INT) was founded in 1998 on the initiative of Forschungszentrum Karlsruhe and the Universities of Karlsruhe and Strasbourg. The institute aims at performing research in selected fields of nanotechnology on a worldwide accepted level.
Research topics: Metamaterials, Photonic Crystals, Optical Near-Field Spectroscopy.
The Swedish Medical Nanoscience Center at Karolinska Institutet is a novel initiative aimed to promote efficient integration of cutting edge technologies and medical research. In this interdisciplinary setting, a scientific environment is established with the aim to solve biological and medical problems using various kinds of nano-technological approaches.
The Center aims to stimulate nanoscience and microsystems technology activity in Lithuania and Baltic region by participating in European and global networks, research projects and by dissemination of information.
The central scientific focus of the Kavli Institute at Cornell is to ddress the major challenges and opportunities for science at the atomic and molecular scale.
iCONM is a facility that gathers industry, academia and government under one roof, in a system that fuses a range of nanomedicine fields that works toward the implementation of innovative research and its achievements.
The PMNP Laboratory (Yan research group) is interested in high-accuracy, high-efficiency, resource-saving manufacturing technologies. Through micro/nanometer-scale material removal, deformation, and surface property control, new products with high added value are provided to micromechanical, optical, optoelectronic, and biomechanical applications. The group is exploring multidisciplinary R&D by interfacing with mechanical science, physics, material science and nanotechnology.
The SoCC is dedicated to the design and realization of advanced electronic circuits and systems as well as sensory devices. The expertise in the center covers the various facets of electronic systems, including digital, analog and mixed-signal.
The objectives of the Kimmel center for Nanoscale Science is to encourage research in this burgeoning scientific discipline in general, and to help establish the links between molecular biology and nanoscale science, in particular.
The research in the group involves the development and applications of advanced photonic technologies and of novel nanomaterials to address modern challenges in photonic and quantum technologies, new nanostructured materials, sensing, imaging and clean energy. The group adopts an interdisciplinary approach to provide leading-edge research in optical, mechanical and structural properties of nanostructures and nanoparticles.
Gain experience of research in the rapidly developing interdisciplinary areas of biophotonics, nanomaterials and nanophotonics, X-ray physics and computational modelling. Consists of taught components plus a research project. Ideal preparation for a higher physics degree or careers in scientific research or the financial sector.
This virtual centre of expertise brings together leading edge academic research and expertise in applied materials chemistry at the universities of Bolton, Liverpool, Manchester and the molecular modelling capabilities of the Science and Technology Facilities Council at Daresbury, all in the UK. KCMC aims to drive industrial growth for the UK chemistry-using industries through the coordination, development and exploitation of leading edge materials chemistry research.
Major research topics are Optical Properties of Mesoscopic Particles; Fabrication and Characterization of Novel Carbonaceous Nano-Materials; Surface Plasmon and Near-Field Optics; and Optical Waveguides and Other Photonic Devices
Kolektor Nanotesla Institute is a R&D center that builds on significant expertise in field of nanomaterials and composites, microwave applications and magnetism.
The group uses polymeric templating, electrospinning, nanomaterials synthetic techniques to explore novel and versatile synthesis routes for producing multi-dimensional nanostructures and various metallic, metal-oxide nanomaterials and nanoinks optimized for applications to energy, environment, and nanoelectronics.
The group's research focuses on condensed-matter physics and materials chemistry of metal phosphates and oxides, and materials design and synthesis for advanced lithium batteries, covering atomic-scale characterization with HREM and STEM, and nanostructure control of materials interfaces.
The group conducts research on bioinspired materials relevant for energy-related nanomaterials.
The group is interested in enhancing device performances by using novel nanotechnologies. They are studying new self-assembly materials forming sub-10 nm nanostructures based on polymers and nanoparticles. Their novel self-assembling systems aim for much superior precision, reliability, and reproducibility that are adequate for large-scale manufacturing of nanoscale devices. Applications include sub-10 nm lithography, information storage devices and energy storage/capture devices.
The research center is involved in the development of nanobiochips, nanobiosensors and nanobiomaterials by utilizing biocontents.
The lab offers quick and comprehensive solutions matching the needs of clients applying achievements in technology in the areas of nanotechnology, biotechnology, energy-, and environment-related technologies.
The Master's Programme in Nanotechnology provides a solid background in solid state physics, semiconductor devices, materials science and design, microelectronics, materials chemistry and an introduction to biotechnology. It offers a broad range of fundamental courses, e.g., quantum mechanics and solid state physics, but the programme is also experimentally oriented and provides several laboratory exercises as well as practical experience from advanced research tools for materials and device characterization.
The Electrum Laboratory constitutes a world-class resource for education, research, development and small scale production for micro and nano fabrication.
Materials science has traditionally been an important research area at KTH with strong ties to the Swedish industry. In addition to the internationally highly competitive research in traditional materials, KTH has strong research in nanoscience and nanotechnology, which is used to study and tailor material structures.
Research on quantum Josephson circuits, nanostructured proteins and spintronics.