Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1 - 19 of 19 for research and community organizations starting with W:

 
Wageningen BioNT at the University of Wageningen is active in the fundamental science and technology of micro- and nanosystems and their applications in food and health. The centre helps companies to utilize the opportunities of micro- and nanotechnology to improve our food and prevent health problems.
Addressing pressing issues of human society, research at the Nanotech Center is driven by outcome-based relevance in the medical fields, in alternative energy technologies, and in technologies that aid in the development of peaceful nations.
An interdisciplinary group of scientists using the tools of nanotechnology to study biology at the smallest scale. The group's goals are to learn more about the basic functions and interactions of biological molecules and to use what they find to achieve new capabilities with biomedical implications. In pursuing this goal, they bring together aspects of physics, engineering, molecular biology, and many other disciplines.
Backed by the establishment of Center of Excellence as a hub research center and the enhancement of research facilities, the Department of Nanoscience and Nanoengineering has created an environment that provides powerful support for nanoscience and nanoengineering, alongside industry-academy partnerships.
The department conducts research on nanomaterials.
The lab's research interests are fabrication, characterization, and fundamental understanding of advanced nano/micro photonic devices with outstanding optical properties.
In 2005, the National Cancer Institute (NCI) recognized Washington University School of Medicine's contribution to nanomedicine with a five-year, $16 million grant to establish the Siteman Center of Cancer Nanotechnology Excellence (SCCNE). It is one of eight such centers funded by the NCI in the United States.
The lab's research interests are focused at the intersection organic and plasmonic nanomaterials. They aim at rational integration of organic (polymeric, biological) materials and plasmonic nanostructures to realize multifunctional materials. Organic materials with responsive and self-assembling properties combined with functional plasmonic nanostructures that exhibit unique optical properties forms a powerful materials platform for a wide variety of applications including plasmonic photovoltaics, chemical and biological sensors, adaptive materials, non- or minimally-invasive bioimging and therapy.
This website provides information on various nanoscience and nanotechnology initiatives at Wayne State University.
The Functional Nanomaterials and Electrochemistry group, under the leadership of Prof. Israel Rubinstein, focuses its research in the general area of nanochemistry, namely the preparation, study and applications of novel architectures controlled on the nanometer scale.
The group is interested in developing new molecular and nanoscale approaches to both understanding chemical and physical properties of materials (inorganic, organic and biological) as well as to the production and assembly of new materials and devices exhibiting interesting phenomena and useful applications. Their research emphasizes the role of intermolecular forces in chemistry, as the basis for both molecular recognition and molecular assembly.
The group of Dan Oron is concerned with nonlinear optical properties of plasmonic nanostructures, dynamics of multiply excited multicomponent semiconductor quantum dots, development of far-field sub-diffraction-limited imaging techniques, and nanoparticle-based nonlinear microscopy techniques.
The group is investigating chemical and physical properties of matter at the nanoscale. They are particularly interested in new approaches to the synthesis of nanocrystals: self-assembly of nanoparticles; organic nanostructures; supramolecular chemistry; chemical reactivity in confined spaces; molecular switches; and stimuli-responsive materials.
The Sub Micron Semiconductor Center is a unique facility enabling the design, material growth, fabrication, and characterization of mesoscopic systems, with dimensions ranging from 10 nm to a few micrometers.
The Western Institute of Nanoelectronics (WIN), a National Institute of Excellence, has been organized to build on the best interdisciplinary talents in the field of nanoelectronics in the world. WIN?s mission is to explore and develop advanced research devices, circuits and nanosystems with performance beyond conventional scaled CMOS.
A project funded by the European Commission to encourage young women to consider studies and pursue careers in this new scientific field (providing role models and mentoring programs), attract youth to Nano, network and empower women scientists working in Nano-Science at European level, stimulate female scientists to participate in EU programmes, mobilize stakeholders in favour of gender equality in scientific research and stimulate the science-society dialog.
Research programs of the AFM Lab include mechanical properties of carbon nanotubes and photoresponse of light-activated molecules.
In BEI's seven multidisciplinary centers, scientists, engineers, and clinicians address important research challenges in several major areas of medical technology and healthcare, including bioprocessing, imaging, nanotechnology, remote diagnostics and treatment, sensing, and water quality.
Current research and education carried out in this laboratory focus upon the experimental and conceptual study of nanoscaled materials fabricated by Non-lithography process assisted with anodized aluminum oxide (AAO) template.