Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 601 - 625 of 1700

 
The MONA project (Merging Optics and Nanotechnologies) has been launched in June 2005 by the European Commission in order to bridge the gap between photonics and nanotechnologies. The ultimate objective of the project is the development of a European roadmap for photonics and nanotechnologies.
The Monash Centre for Atomically Thin Materials (MCATM) fosters collaboration among existing researchers at the university, bringing them together with those with expertise in atomically thin materials, as well as encouraging partnerships with international partners and industry. It also provides a highly multidisciplinary environment to train early career researchers and students.
The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology is a national innovator in bio-nano sciences and an incubator of the expertise and technological excellence required to develop next generation bio-responsive nanomaterials.
An underlying guiding principle in most of the group's work is the relevance of transport processes primarily mass and momentum. They seek deeper understanding of fluid and mass transport in confined spaces, and the relationship between transport phenomena and materials processing.
Research includes Micro/Nano precision manipulation.
Monash University is recognized as one of the leading centres of nanoscience in Australia, with world-class capabilities in nanoscale materials science and engineering and nanobiotechnology.
The Montana Microfabrication Facility is a resource for Montana State University, external academics, and commercial entities that provides affordable access to a range of micro and nanofabrication equipment. They support applications ranging from fundamental physics to biology, microfluidics, MEMS and MOEMS, and sensors. The facilities include 2,200 square feet of Class 1,000 and Class 10,000 cleanroom laboratories with broad capabilities in lithography, thin film deposition, thermal processing, wet and dry etching, packaging, and testing.
This facility is dedicated to the growth and characterization of magnetic films, magnetic particles, and magnetic interfaces with the goal of understanding their intrinsic behavior. A technological example of the utility of such films is in non-volatile magnetic random access memories (MRAM), high density archival storage, and magnetic nano-particle based sensors.
Nanotechnology at the Hungarian Academy of Sciences
The CARBIO partners apply a multidisciplinary approach to exploit the potential of multi-functional carbon nanotubes (CNT) for biomedical applications, in particular to act as magnetic nano-heaters, drug-carrier systems and sensors which allow a diagnostic and therapeutic usage on a cellular level.
The goal of the MultiPlat project is to develop biomimetic proton conductive membranes with nanometer thickness (nanomembranes) through convergence of the number of fields. The primary application of this multipurpose nanotechnological platform is the next generation of fuel cells where it will replace the prevailing evolutionary modifications of the state of the art solutions.
MULTIPROTECT is an Integrated Project within the thematic priority of 'Nanotechnology and Nanosciences, knowledgebased multifunctional materials and new production processes and devices' of the 6th Framework Programme of the European Commission. The consortium aims to provide a generally applicable, highly innovative, heavy metal free, multifunctional and corrosion preventing surface technology on the basis of smart nanocomposite materials with new nanoparticles as functional design elements.
This internationally recognized Master of Science (M. Sc.) course of study offers students of the natural sciences an advanced degree coupled with practical experience. The Course of Study may be completed in three semesters of full-time study or over a longer period of time for students whose professions only permit part-time study.
MAP develops new coherent light sources and secondary light-driven particle sources with unprecedented properties.
Main areas of research are nano-Engineering; nano-Environment; nano-Industrial; bio-nanotechology.
Murdoch University offers the undergraduate degree Bachelor of Science in Nanoscience which may be completed in three years of full-time study or over a longer period on a part-time basis. A fourth year of study and research is available if you are selected for an Honours degree.
With this course you will explore classical and modern physics, investigating the physical world around us and beyond. You'll also learn about Nanoscience, the science of the really small, and gain an understanding of the rules and complexities of physics at finer and finer levels.
The Graduate Diploma in Nanoscience program is available to graduate students who wish to upgrade their degree to include a specialisation in the newly developing field of Nanoscience. It provides both a theoretical background as well as practical experience which is gained from completing a major project.
The research degrees of Doctor of Philosophy (PhD) and Master of Philosophy (MPhil) are available at Murdoch University.
The project MUST aims at providing new technologies based on active multi-level protective systems for future vehicle materials. 'Smart' release nanocontainers will be developed and incorporated in commercial paints, lacquers and adhesive systems to prepare new products exhibiting self-healing properties.
MyFab is a cooperative network of three world-class cleanrooms excelling in micro and nano fabrication. The network offers an extremely wide platform for both academic and commercial interests in Sweden, Europe and around the world.
N2P - Flexible Production Technologies and Equipment based on Atmospheric Pressure Plasma Processing for 3D Nano Structured Surfaces. This project will develop innovative in-line high throughput technologies based on atmospheric pressure surface and plasma technologies. The two identified approaches to direct 3D nanostructuring are etching for manufacturing of nanostructures tailored for specific applications, and coating.
The NADINE project aims at the development of a diagnostic tool able to detect in blood as early as possible, and at a cost compatible with large scale screening, an emerging neurodegenerative disease, and thus aid in the selection the best treatment. The project involves a multidisciplinary consortium of technology developers, three leading biomedical groups in clinical neuroscience for definition of specifications and end-user pre-clinical validation, three research-oriented SMEs in biotechnology, nanosensing and microfluidics and a pharmaceutical company.
Nano devices and bio-MEMS
The lab aims to develop the bases of future nano-electronics. Their main subjects are novel electron devices and optoelectronic devices using carbon nanotubes, high-power and high-frequency GaN transistors, and resonant-tunneling devices and functional circuits.